39 resultados para coincidence spectroscopy beta decay nuclear mass defect excess
Resumo:
This study centers on the question: How sensitive are 231Pa/230Th and 10Be/230Th to sediment composition and redistribution? The natural radionuclides 231Pa, 230Th and 10Be recorded in deep sea sediments are tracers for water mass advection and particle fluxes. We investigate the influence of oceanic particle composition on the element adsorption in order to improve our understanding of sedimentary isotope records. We present new data on particle size specific 231Pa and 10Be concentrations. An additional separation step, based on settling velocities, led to the isolation of a very opal-rich phase. We find that opal-rich particles contain the highest 231Pa and 10Be concentrations, and higher 231Pa/230Th and 10Be/230Th isotope ratios than opal-poor particles. The fractionation relative to 230Th induced by the adsorption to opal-rich particles is more pronounced for 231Pa than for 10Be. We conclude that bulk 231Pa/230Th in Southern Ocean sediments is most suitable as a proxy for past opal fluxes. The comparison between two neighboring cores with rapid and slow accumulation rates reveals that these isotope ratios are not influenced significantly by the intensity of sediment focusing at these two study sites. However, a simulation shows that particle sorting by selective removal of sediment (winnowing) could change the isotope ratios. Consequently, 231Pa/230Th should not be used as paleocirculation proxy in cases where a strong loss of opal-rich material due to bottom currents occurred.
Resumo:
There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.
Resumo:
Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.
Resumo:
Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.
Resumo:
Sixteen elemental abundances and 87Sr/86Sr ratio of the Nauru Basin basalt (Cores 75 to 90: sub-bottom depths 950 m to 1050 m) from Hole 462A have been determined by inductively coupled plasma-optical emission spectroscopy and mass spectrometry. The result indicates that the basalt is a new type of oceanic tholeiite, elementally similar to normal mid-oceanic ridge basalts and isotopically similar to oceanic island-type basalts.
Resumo:
Interstitial water and sediment samples of the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" were analyzed for chemical composition and stable isotope ratios. A total of 222 water samples were collected from the cores by Rhizon samplers and squeezing of fresh core material. Water was analyzed for its stable oxygen and hydrogen isotope geochemistry (d2H and d18O) at sites M0027A and M0029A, and the carbon isotope composition of the dissolved inorganic carbon (d13CDIC) (all sites). In addition, organic material (Corg) and inorganic carbonates from sediments were analyzed for their carbon ratios (d13Corg and d13Ccarb), and in case of the carbonates also for oxygen (d18Ocarb). Carbon isotopes were also analyzed in samples containing enough methane gas (d13Cmeth). Pore fluids from site M0027A were analyzed for the sulfur isotope composition of dissolved sulfate (d34S). The combination of isotope analyses of all phases (interstitial water, sediment, and gas) with pore water chemistry is expected to enable a better understanding of processes in the sediment and will help to identify the origin of fluids under the New Jersey shelf.
Resumo:
We explore the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales. We focus on the late Oligocene through Pleistocene (27-0 Ma) history of paleotemperatures and the evolution of the d18O values of seawater (d18Osw) at a temporal resolution of ~100-200 kyr. Absolute paleotemperature estimates depend on assumptions of how Mg/Ca ratios of seawater have changed over the past 27 Myr, but relative changes that occur on geologically brief timescales are robust. Results indicate that at the Oligocene to Miocene boundary (23.8 Ma), temperatures lag the increase in global ice-volume deduced from benthic foraminiferal d18O values, but the smaller-scale Miocene glaciations are accompanied by ocean cooling of -1°C. During the mid-Miocene phase of Antarctic ice sheet growth (~15-13 Ma), water temperatures cool by ~3°C. Unlike the benthic foraminiferal d18O values, which remain relatively constant thereafter, temperatures vary (by 3°C) and reach maxima at ~12 and ~8.5 Ma. The onset of significant Northern Hemisphere glaciation during the late Pliocene is synchronous with an ~4°C cooling at site 747. A comparison of our d18Osw curve to the Haq et al. (1987, doi:10.1126/science.235.4793.1156 ) sea level curve yields excellent agreement between sequence boundaries and times of increasing seawater 18O/16O ratios. At ~12-11 Ma in particular, when benthic foraminiferal d18O values do not support a further increase in ice volume, the d18Osw curve comes to a maximum that corresponds to a major mid-Miocene sea level regression. The agreement between the character of our Mg/Ca-based d18Osw curve and sequence stratigraphy demonstrates that benthic foramaniferal Mg/Ca ratios can be used to trace the d18Osw on pre-Pleistocene timescales despite a number of uncertainties related to poorly constrained temperature calibrations and paleoseawater Mg/Ca ratios. The Mg/Ca record also highlights that deep ocean temperatures can vary independently and unexpectedly from ice volume changes, which can lead to misinterpretations of the d18O record.
Resumo:
A record of changes in Pb and Sr isotopic composition of two cores (DSDP 86-576A and LL44- GPC-3) from the red clay region of the central North Pacific has been determined for the past 60-65 million years. The isotope records of the eolian silicate fraction of the red clays reflect the change in source area as the core sites migrated under different wind systems. The Sr isotope compositions of eolian silicate material are consistent with Asian loess and North American arc volcanism that has been recognized from mineralogical studies. The silicate-bound eolian Pb isotopic compositions similarly reflect Asian loess and arc volcanism. The isotope records of three ferromanganese crusts from similar locations in the central Pacific are similar to the eolian component of red clays, but offset to less radiogenic values. This may be due to two mechanisms: (1) Pb that can be removed from eolian material by seawater is much less radiogenic, or less likely (2) hydrothermal Pb can be transported further away from venting sites through particle exchange with seawater, despite hydrothermal venting acting as a net sink of oceanic Pb. The temporal changes in Pb isotopes in the ferromanganese crusts, bulk red clays and eolian silicates are similar although offset from each other suggesting that eolian deposition is an important source of Pb to seawater and to ferromanganese crusts. This contrasts with the Atlantic and Southern Ocean where more intense deep water flow leads to isotopic gradients in FeMn crusts that do not reflect surface water conditions immediately above the crust. A mechanism is proposed which accounts for Pacific deepwater Pb being isotopically influenced by eolian deposition.