26 resultados para arid and semiarid region
Resumo:
Understanding past human-climate-environment interactions is essential for assessing the vulnerability of landscapes and ecosystems to future climate change. This is particularly important in southern Morocco where the current vegetation is impacted by pastoralism, and the region is highly sensitive to climate variability. Here, we present a 2000-year record of vegetation, sedimentation rate, XRF chemical element intensities, and particle size from two decadal-resolved, marine sediment cores, raised from offshore Cape Ghir, southern Morocco. The results show that between 650 and 850 AD the sedimentation rate increased dramatically from 100 cm/1000 years to 300 cm/1000 years, and the Fe/Ca and pollen flux doubled, together indicating higher inputs of terrestrial sediment. Particle size measurements and end-member modelling suggest increased fluvial transport of the sediment. Beginning at 650 AD pollen levels from Cichorioideae species show a sharp rise from 10% to 20%. Pollen from Atemisia and Plantago, also increase from this time. Deciduous oak pollen percentages show a decline, whereas those of evergreen oak barely change. The abrupt increase in terrestrial/fluvial input from 650 to 850 AD occurs, within the age uncertainty, of the arrival of Islam (Islamisation) in Morocco at around 700 AD. Historical evidence suggests Islamisation led to population increase and development of southern Morocco, including expanded pastoralism, deforestation and agriculture. Livestock pressure may have changed the vegetation structure, accounting for the increase in pollen from Cichorioideae, Plantago, and Artemisia, which include many weedy species. Goats in particular may have played a dominant role as agents of erosion, and intense browsing may have led to the decline in deciduous oak; evergreen oak is more likely to survive as it re-sprouts more vigorously after browsing. From 850 AD to present sedimentation rates, Fe/Ca ratios and fluvial discharge remain stable, whereas pollen results suggest continued degradation. Pollen results from the past 150 years suggest expanded cultivation of olives and the native argan tree, and the introduction of Australian eucalyptus trees. The rapidly increasing population in southern Morocco is causing continued pressure to expand pastoralism and agriculture. The history of land degradation presented here suggests that the vegetation in southern Morocco may have been degraded for a longer period than previously thought and may be particularly sensitive to further land use changes. These results should be included in land management strategies for southern Morocco.
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
During GANOVEX VI new gravity data were collected along an east-west profile in North Victoria Land south of the Drygalski Ice Tongue, extending 150 km across the Transantarctic Mountains, and comprising 21 data points. Thirty five additional data points were collected over a small area near Brimstone Peak, near the western end of the regional profile. The survey south of the Drygalski has been connected to northern gravity data (GANOVEX V) by a survey line of 12 points. All data have been terrain corrected, and are further constrained by satellite elevation (GPS) and radar ice-thickness measurements. A pronounced regional Bouguer gravity gradient decreasing to the west by approximately 3 mgal/km is superimposed over a coast-parallel belt of granitoid basement rock. West of this belt the local gravity fields become mote variable. Over Beta Peak (Ferrar dolerite) a 50 mgal spike is obser- ved. Within this area, the Ferrar sills are exposed at the surface. West of Brimstone Peak (Ferrar/Kirk patrick sequences), a smooth regional gradient appears to reassert itself. We interpret the initial gradient east (oceanward) of the break-in-slope to be representative of the crust/mantle boundary within the study area. We interpret the initial break-in-slope and the apparent flattening of the regional gradient to be an effect of the N-S trending zone of dense Ferrar sills and associated deep crusttil fractionate replacing less dense basement. We attribute the variability of the local field to be the product of sub-glacial density contrasts that cannot be removed. The regional gravity gradient of the profile is steeper than that observed to the north (Mt. Melbourne quadrangle) and shallower than that reported to the south (McMurdo Sound). The absolute values of the coastal points of origin south of the Drygalski and within the Mt. Melbourne quadrangle differ by 60 to 100 mgal. In addition, topographic relief within the regional transect area is subdued relative to the Transantarctic Mountains to the north and south. We speculate that the root structure of the Transantarctic Mountains undergoes a change somewhere between the Mt. Melbourne quadrangle and the region south of the Drygalski Ice Tongue.
Resumo:
Despite their high abundance and their high importance for the oceanic matter flux, heterotrophic nanoflagellates are only poorly studied in the deep-sea regions. Studies on the choanoflagellate distribution during two deep-sea expeditions, to the South Atlantic (5038 m) and Antarctica (Weddell Sea, 2551 m), revealed the deepest records of choanoflagellates so far. A new species, (Lagenoeca antarctica) with a conspicuous spike structure on the theca is described from deep Antarctic waters. Lagenoeca antarctica sp. n. is a solitary unstalked free living salpingoecid-like choanoflagellate. The protoplast is surrounded by a typical theca with unique spikes only visible in SEM micrographs. The ovoid cell nearly fills the whole theca and ranges in size from 4 to 6 µm. The collar measures 2-3 µm and the flagellum 3-5 µm. A second species, Salpingoeca abyssalis sp. n., was isolated from the abyssal plain of the South Atlantic (5038 m depth). Floating and attached forms were observed. The protoplast ranges from to 2 to 4 µm in length and 1 to 2 µm in width. The collar is about the same length as the protoplast and the flagellum has 2 to 2.5 × the length of the protoplast. Phylogenetic analyses based on a fragment of SSU rDNA revealed Salpingoeca abyssalis to cluster together with a marine isolate of Salpingoeca infusionum while Lagenoeca antarctica clusters separately from the other codonosigid and salpingoecid taxa. Salpingoeca abyssalis and an undetermined Monosiga species seems to be the first choanoflagellate species recorded from the abyssal plain.
Resumo:
The present-day condition of bipolar glaciation characterized by rapid and large climate fluctuations began at the end of the Pliocene with the intensification of the Northern Hemisphere continental glaciations. The global cooling steps of the late Pliocene have been documented in numerous studies of Ocean Drilling Program (ODP) sites from the Northern Hemisphere. However, the interactions between oceans and between land and ocean during these cooling steps are poorly known. In particular, data from the Southern Hemisphere are lacking. Therefore I investigated the pollen of ODP Site 1082 in the southeast Atlantic Ocean in order to obtain a high-resolution record of vegetation change in Namibia between 3.4 and 1.8 Ma. Four phases of vegetation development are inferred that are connected to global climate change. (1) Before 3 Ma, extensive, rather open grass-rich savannahs with mopane trees existed in Namibia, but the extension of desert and semidesert vegetation was still restricted. (2) Increase of winter rainfall dependent Renosterveld-like vegetation occurred between 3.1 and 2.2 Ma connected to strong advection of polar waters along the Namibian coast and a northward shift of the Polar Front Zone in the Southern Ocean. (3) Climatically induced fluctuations became stronger between 2.7 and 2.2 Ma and semiarid areas extended during glacial periods probably as the result of an increased pole-equator thermal gradient and consequently globally enhanced atmospheric circulation. (4) Aridification and climatic variability further increased after 2.2 Ma, when the Polar Front Zone migrated southward and the influence of Atlantic moisture brought by the westerlies to southern Africa declined. It is concluded that the positions of the frontal systems in the Southern Ocean which determine the locations of the high-pressure cells over the South Atlantic and the southern Indian Ocean have a strong influence on the climate of southern Africa in contrast to the climate of northwest and central Africa, which is dominated by the Saharan low-pressure cell.
Resumo:
Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.
Resumo:
Paleomagnetic analyses of the natural remanent magnetization of >1700 vertically oriented sediment samples from Integrated Ocean Drilling Program (IODP) Holes U1319A, U1320A, U1322B, and U1324B in the northern Gulf of Mexico reveal complex magnetostratographic signals for the Brazos-Trinity and Ursa region carried by detrital iron oxide minerals. Additionally, gyroremanent magnetization was observed to form during alternating-field demagnetization of samples containing an enhanced amount of magnetic iron sulfide minerals. Most characteristic remanent magnetization inclinations are reasonable for the site latitudes. Stable declinations allow for azimuth correction of the formerly unoriented drill cores.
Resumo:
The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).
Resumo:
The assemblages inhabiting the continental shelf around Antarctica are known to be very patchy, in large part due to deep iceberg impacts. The present study shows that richness and abundance of much deeper benthos, at slope and abyssal depths, also vary greatly in the Southern and South Atlantic oceans. On the ANDEEP III expedition, we deployed 16 Agassiz trawls to sample the zoobenthos at depths from 1055 to 4930 m across the northern Weddell Sea and two South Atlantic basins. A total of 5933 specimens, belonging to 44 higher taxonomic groups, were collected. Overall the most frequent taxa were Ophiuroidea, Bivalvia, Polychaeta and Asteroidea, and the most abundant taxa were Malacostraca, Polychaeta and Bivalvia. Species richness per station varied from 6 to 148. The taxonomic composition of assemblages, based on relative taxon richness, varied considerably between sites but showed no relation to depth. The former three most abundant taxa accounted for 10-30% each of all taxa present. Standardised abundances based on trawl catches varied between 1 and 252 individuals per 1000 m2. Abundance significantly decreased with increasing depth, and assemblages showed high patchiness in their distribution. Cluster analysis based on relative abundance showed changes of community structure that were not linked to depth, area, sediment grain size or temperature. Generally abundances of zoobenthos in the abyssal Weddell Sea are lower than shelf abundances by several orders of magnitude.
Resumo:
The water masses in the Florida Straits and Bahamas region are important sources for the Northern Atlantic surface ocean circulation. In this study, we analyse carbonate preservation in surface sediments located above the chemical lysocline in the Florida Straits and Bahamas region and discuss possible reasons for supralysoclinal dissolution. Calcite dissolution proxies such as the variation of the foraminiferal assemblage, Fragmentation Index, Benthic Foraminifera Index, and Resistance Index displayed a good preservation in both areas. The pteropod species Limacina inflata showed very good preservation in sediments of inter-platform channels from the Great Bahama Bank (Providence Channel, Exuma Sound) above the aragonite lysocline. Supralysoclinal aragonite dissolution, however, was observed at two water depth levels (800-1000 m and below 1500 m) in the Florida Straits. Our observations suggest that the supralysoclinal dissolution in the Florida Straits is due to the degradation of organic material. The presence of Antarctic Intermediate Water (AAIW) may be a contributing factor for the significant aragonite dissolution in 800-1000 m. The comparison of modern preservation patterns of the surface sediments with hydrographical measurements shows that the L. inflata Dissolution Index (LDX) might be an adequate proxy to reconstruct paleo-water mass conditions in an area which is highly saturated with respect to calcium carbonate.