487 resultados para Lonicera
Resumo:
A long-running interdisciplinary research project on the development of landscape, prehistoric habitation and the history of vegetation within a "siedlungskammer" (limited habitation areal from neolithic to modern times has been carried out in the NW German lowlands, The siedlungskammer Flögeln is situated between the rivers Weser and EIbe and comprises about 23.5 km^2. It is an isolated pleistocene area surrounded by bogs, the soils consisting mainly of poor sands. In this siedlungskammer large-seale archaeological excavations and mappings have been performed, parallel to pedological, historical and above all pollen analytical investigations. The aim of the project is to record the individual phases in time, to delimit the respective settlement areas and to reconstruct the conditions of life and economy for each time period. A dense network of 10 pollen diagrams has been constructed. Several of them derive from the marginal area and from the centre of the large raised bog north of the siedlungskammer. These diagrams reflect the history of vegetation and habitation of a large region; due to the large pollen source area the habitation phases in the diagrams are poorly defined. Even in the utmost marginal diagram of this woodless bog, a great village with adjoining fields, situated only 100 m away from it, is registered with only low values of anthropogenic indicators. In contrast to this, the numerous pollen diagrams from kettle-hole bogs inside the siedlungskammer yield an exact picture of the habitation of the siedlungskammer and their individual parts. Early traces of habitation can be identified in the pollen diagram soon after the elm decline (around 5190 BP). Some time later in the middle neolithic period there follows a marked habitation phase, which starts between 4500 and 4400 BP and reflects the immigration of the trichterbecher culture. It corresponds to the landnam phase of Iversen in Denmark and begins with a sharp decline of the pollen curves of lime and oak, followed by the increase of anthropogenic indicators pointing to arable and pastural farming. High values of wild grasses and Calluna witness extensive forest grazing. This middle to late neolithic habitation is also registered archaeologically by settlements and numerous graves. After low human activity during Bronze Age and Older Iron Age times the archaeological and pollen analytical records of Roman and Migration periods is again very strong. This is followed by a gap in habitation during the 6th and 7th centuries and afterwards in the western part of the siedlungskammer from about 700 AD until the 14th century by the activity of the medieval village of Dalem, that was also excavated and whose fields were recorded by phosphate mapping to a size of 117 hectares. This medieval settlement phase is marked by much cereal cultivation (mainly rye). The dense network of pollen diagrams offers an opportunity to register the dispersion of the anthropogenic indicators from the areas of settlement to different distances and thus to obtain quantitative clues for the assessment of these anthropogenic indicators in pollen diagrams. In fig. 4 the reflection of the neolithic culture in the kettle-hole bogs and the large raised bog is shown in 3 phases: a) pre landnam, b) TRB-landnam, c) post landnam. Among arboreal pollen the reaction of Quercus is sharp close to the settlement but is not found at more distant profiles, whilst in contrast to this Tilia shows a significant decline even far away from the settlements. The record of most anthropogenic indicators outside the habitation area is very low, in particular cereal pollen is poorly dispersed; much more certain as an indicator for habitation (also for arable farming!) is Plantago lanceolata. A strong increase of wild grasses (partly Calluna aswell) some distance from the habitation areas indicates far reaching forest grazing. Fig. 5 illustrates the reflection of the anthropogenie indicators from the medieval village Dalem. In this instance the field area could be mapped exactly using phosphate investigations, and it has been possible to indicate the precise distances of the profile sites from the medieval fields. Here also, there is a clear correlation between decreasing anthropogenic indicators and increasing distance. In a kettle-hole bog (FLH) a distance of 3000 m away this marked settlement phase is not registered. The contrast between the pollen diagrams SWK and FLH (fig. 2 + 3, enclosure), illustrates the strong differences between diagrams from kettlehole bogs close to and distant from the settlements, for the neolithic as well as for the medieval period. On the basis of the examples presented here, implications concerning the interpretation of pollen diagrams with respect to habitation phases are discussed.
Resumo:
Pollen analyses have been proven to possess the possibility to decipher rapid vegetational and climate shifts in Neogene sedimentary records. Herein, a c. 21-kyr-long transgression-regression cycle from the Lower Austrian locality Stetten is analysed in detail to evaluate climatic benchmarks for the early phase of the Middle Miocene Climate Optimum and to estimate the pace of environmental change. Based on the Coexistence Approach, a very clear signal of seasonality can be reconstructed. A warm and wet summer season with c. 204-236 mm precipitation during the wettest month was opposed by a rather dry winter season with precipitation of c. 9-24 mm during the driest month. The mean annual temperature ranged between 15.7 and 20.8 °C, with about 9.6-13.3 °C during the cold season and 24.7-27.9 °C during the warmest month. In contrast, today's climate of this area, with an annual temperature of 9.8 °C and 660 mm rainfall, is characterized by the winter season (mean temperature: -1.4 °C, mean precipitation: 39 mm) and a summer mean temperature of 19.9 °C (mean precipitation: 84 mm). Different modes of environmental shifts shaped the composition of the vegetation. Within few millennia, marshes and salt marshes with abundant Cyperaceae rapidly graded into Taxodiaceae swamps. This quick but gradual process was interrupted by swift marine ingressions which took place on a decadal to centennial scale. The transgression is accompanied by blooms of dinoflagellates and of the green alga Prasinophyta and an increase in Abies and Picea. Afterwards, the retreat of the sea and the progradation of estuarine and wetland settings were a gradual progress again. Despite a clear sedimentological cyclicity, which is related to the 21-kyr precessional forcing, the climate data show little variation. This missing pattern might be due to the buffering of the precessional-related climate signal by the subtropical vegetation. Another explanation could be the method-inherent broad range of climate-parameter estimates that could cover small scale climatic changes.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.
Resumo:
High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.
Resumo:
1. Late glacial and postglacial sediments from three former lakes in the Lake Garda area (Southern Alps) were investigated. 2. The pollen diagram from Bondone (1550 m) shows an older phase rich in NAP. A younger one corresponds with the Younger Dryas time according to two radiocarbon determinations. In the Preboreal no climatic deterioration could be found. 3. At first plants, which are nowadays typical for snow-ground, pioneer and dwarf shrub associations, immigrated into the surroundings of Bondone. In Alleröd times larch and pine appeared as the first trees. At the beginning of the Preboreal dense forest existed in that region. During the Alleröd timber line was at about 1500 m. 4. In the pollen diagrams from Saltarino (194 m) and Fiavè (654 m) an oldest period rich in NAP is followed by two stadial and two interstadial phases. Tree birches and larches immigrated during the oldest interstadial phase. 5. In the case of Saltarino and Fiavè only a preliminary dating could be made. A correlation seems to be possible with diagrams published by Zoller as well as with the diagram of Bondone. Discrepances in dating, which arise then, are discussed. According to the two possibilities of dating the youngest stadial is synchronous either with the so-called Piottino stadial or the Younger Dryas time. Consequently the oldest interstadial phase of Saltarino corresponds either with the Bölling or with a pre-Bölling interstadial. The last possibility seems to be more probable. 6. In the southern part of the Lake Garda area reforestation was preceded by a long shrub phase mainly with Juniperus. At about 650 m there was a period with Pinus mugo and only with a small amount of Juniperus before reforestation. A phase with Betula nana well known from areas north of the Alps could nowhere be found. 7. In the area under study larch appeared as the first tree. Lateron it has been the most important constituent of the forests near timber line. Birch, which plays an important role as a pioneer tree in Denmark - for instance at the transition of the pollen zones III/IV - as well as in Southern Germany during Bölling time, was of less importance at the southern border of the Alps. In that area the spreading of Pinus occurred very early causing dense forests. 8. During the last stadial phase (probably Younger Dryas time) dense forests with Pinus and Larix existed at 650 m. In the lower part of the Lake Garda area, however, both thermophilous trees as Quercus and herbs frequently occurred. This leads to the conclusion that during this time tree growth was limited by dryness in lower altitudes of the border of the Southern Alps. Pinus and Juniperus, however, do not show higher values in this period, a fact which cannot yet be explained. 9. A list of plants, which were found in the sediments, is compiled. Helodium lanatum, Dictamnus albus, Mercurialis cf. ovata, Buxus, Cerinthe cf. minor, Onosma, Anthericum and Asphodelus albus are findings, which are of special interest for the history of the flora of that region.
Resumo:
Seven sediment cores from the cruises of the "Meteor" and "Valdivia" were examined palynologically. The cores were retrieved from the lower continental slope in the area of between 33.5° N and 8° N, off the West African coast. Most of the cores contain sediments from the last Glacial and Interglacial period. In some cases, the Holocene sediments are missing. Some individual cores contain sediments also from earlier Glacial and Interglacial periods. The main reason for making this palynological study was to find out the differences between the vegetation of Glacial and Interglacial periods in those parts of West Africa which at present belong to the Mediterranean zone, the Sahara and the zones of the savannas and tropical forests. In today's Mediterranean vegetation zone at core 33.5° N, forests and deciduous forests in particular, are missing during Glacial conditions. Semi-deserts are found instead of these. In the early isotope stage 1, there is a very significant development of forests which contain evergreen oaks; this is the Mediterranean type of vegestation development. The Sahara type of vegetation development is shown in four cores from between 27° N and 19° N. The differences between Glacial and Interglacial periods are very small. It must be assumed therefore that in this latitudes, both Glacial and Interglacial conditions gave rise to desert generally. The results are in favour of a slightly more arid climate during Glacial and more humid one during Interglacial periods. The southern boundary of the Sahara and the adjacent savannas with grassland and tropical woods were situated more to the south during the Glacial periods than they were during the Interglacial ones. In front of today's savanna belt, it can be seen from the palynological results that there are considerable differences between the vegetation of Glacial and Interglacial periods. The woods are more important in Interglacial periods. During the Glacial periods these are replaced from north to south decreasingly by grassland (savanna and rainforest type of vegetation development). The southern limit of the Sahara during stage 2 was somewhat between 12° N and 8° N which is between 1.5 and 5 degrees in latitude further south than it i s today. Not only do these differences in climate and vegetation apply to the maximum of the last Glacial and for the Holocene, but they apparently apply also to the older Glacial and Interglacial periods, where they have been found in the profiles. The North African deset belt can be said to have expanded during Glacial times both towards the north and towards the south. All the available evidence of this study indicates that the grass land or the semi-desert of the Southern Europe cam einto connection with those of the N Africa; there could not have been any forest zone between them. The present study was also a good opportunity for investigating some of the basic marine palynological problems. The very well known overrepresentation of pollen grains of the genus Pinus in marine sediments can be traced as fa as 21° N. The present southern limit for the genus Pinus is on the Canaries and on the African continent as approximately 31° N. Highest values of Ephedra pollen grains even occur south of the main area of the present distribution of that genus. These does not seem to be any satisfactory explanation for this. In general, it would appear that the transport of pollen grains from the north is more important than transport from the south. The results so far, indicate strongly that further palynological studies are necessary. These should concentrate particularly on cores from between 33° N and 27° N as well as between 17° N and 10° N. It would also be useful to have a more detailed examination of sediments from the last Intergalcial period (substage 5 e). Absolute pollen counts and more general examination of surface samples would be desirable. Surface samples should be taken from the shelf down to the bottom of the continental slope in different latitudes.
Resumo:
The high-altitude lake Tso Moriri (32°55'46'' N, 78°19'24'' E; 4522 m a.s.l.) is situated at the margin of the ISM and westerly influences in the Trans-Himalayan region of Ladakh. Human settlements are rare and domestic and wild animals are concentrating at the alpine meadows. A set of modern surface samples and fossil pollen from deep-water TMD core was evaluated with a focus on indicator types revealing human impact, grazing activities and lake system development during the last ca. 12 cal ka BP. Furthermore, the non-pollen palynomorph (NPP) record, comprising remains of limnic algae and invertebrates as well as fungal spores and charred plant tissue fragments, were examined in order to attest palaeolimnic phases and human impact, respectively. Changes in the early and middle Holocene limnic environment are mainly influenced by regional climatic conditions and glacier-fed meltwater flow in the catchment area. The NPP record indicates low lake productivity with high influx of freshwater between ca. 11.5 and 4.5 cal ka BP which is in agreement with the regional monsoon dynamics and published climate reconstructions. Geomorphologic observations suggest that during this period of enhanced precipitation the lake had a regular outflow and contributed large amounts of water to the Sutlej River, the lower reaches of which were integral part of the Indus Civilization area. The inferred minimum fresh water input and maximum lake productivity between ca. 4.5-1.8 cal ka BP coincides with the reconstruction of greatest aridity and glaciation in the Korzong valley resulting in significantly reduced or even ceased outflow. We suggest that lowered lake levels and river discharge on a larger regional scale may have caused irrigation problems and harvest losses in the Indus valley and lowlands occupied by sedentary agricultural communities. This scenario, in turn, supports the theory that, Mature Harappan urbanism (ca. 4.5-3.9 cal ka BP) emerged in order to facilitate storage, protection, administration, and redistribution of crop yields and secondly, the eventual collapse of the Harappan Culture (ca. 3.5-3 cal ka BP) was promoted by prolonged aridity. There is no clear evidence for human impact around Tso Moriri prior to ca. 3.7 cal ka BP, with a more distinct record since ca. 2.7 cal ka BP. This suggests that the sedimentary record from Tso Moriri primarily archives the regional climate history.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
(Einleitung) Im süddeutschen Jungmoränengebiet wurden während der letzten 25 Jahre verschiedene vegetationsgeschichtliche Arbeiten durchgeführt, die der Untersuchung der Späteiszeit galten. Die wichtigsten von ihnen stammen von G. Lang (1952), A. Bertsch (1961), H. Müller (1962) und H. Schmeidl (1971). Ohne Zweifel müssen die dabei gewonnenen Ergebnisse in anderen Landschaften des nördlichen Alpenvorlandes überprüft und verschiedene Probleme weiterhin verfolgt werden, wie z. B. das der Definition und Umgrenzung der Bölling-Zeit und der Älteren Tundrenzeit s. str. und die Abhängigkeit der Vegetationsentwicklung von der Meereshöhe. Die vorliegende Studie ging auch auf die Notwendigkeit zurück, die spätglazialen Ablagerungen bei dem Tonwerk Kolbermoor nahe Rosenheim, einer der klassischen Stätten der Quartärforschung im nördlichen Alpenvorland, einer vegetationsgeschichtlichen Neubearbeitung zu unterziehen. Die Untersuchungen wurden auf benachbarte Seen, den Sims-See und den Hofsrätter See, ausgedehnt, da die Ergebnisse von Kolbermoor faziell beeinflußt schienen (Niedermoore) und an limnischem Material überprüft werden mußten.
Resumo:
Lobsigensee is a small kettle hole lake 15 km north-west of Bern on the Swiss Plateau, at an altitude of 514 m asl. Its surface is 2ha today, its maximum depth 2.7 m; it has no inlet and the overflow functions mainly during snow melting. The area was covered by Rhone ice during the Last Glaciation (map in Fig.2). Local geology, climate and vegetation are summarized in Figure 3A-C, the history of settlement in Figures 5-7. In order to reconstruct the vegetational and environmental history of the lake and its surroundings pollen analysis and other bio- and isotope stratigraphies were applied to twelve profiles cored across the basin with modified Livingstone corers (Fig.3 D). (1) The standard diagram: The central core LQ-90 is described as the standard pollen diagram (Chapter 3) with 10 local pollen assemblage zones of the Late-Glacial (local PAZ Ll to Ll0, from about 16'000(7) to 10'000 years BP) and 20 PAZ of the Holocene (local PAZ L11 to L30), see Figs. 8-10 and 20-24. Local PAZ L 1 to L3 are in the Late-Glacial clay and record the vegetational development after the ice retreat: L1 shows very low pollen concentration and high Pinus percentages due to long-distance transport and reworking; the latter mechanism is corroborated by the findings of thermophilous and pre-Quaternary taxa. Local PAZ L2 has a high di versi ty of non-arboreal pollen (NAP) and reflects the Late-Glacial steppe rich in heliophilous species. Local PAZ L3 is similar but additionally rich in Betula nana and Sal1x, thus reflecting a "shrub tundra". The PAZ L1 to L3 belong to the Oldest Dryas biozone. Local PAZ L4 to L 10 are found in the gyttja of the profundal or in the lake marl of the littoral and record the Late-Glacial forests. L4 is the shrub phase of reforestation with very high Junlperus and rapidly increasing Betula percentages. L5 is the PAZ with a first, L7 with a second dominance of tree-birches, separated by L6 showing a depression in the Betula curve. L4 to L7 can be assigned to the Balling biozone. Possible correlation of the Betula depression to the Older Dryas biozone is discussed. In local PAZ L8 Plnus immigrates and expands. L9 shows a facies difference in that Plnus dominates over Betula in littoral but not in profundal spectra. L8 and L9 belong to the Allerod biozone. In its youngest part the volcanic ash from Laach/Eifel is regularly found (11,000 BP). The local PAZ Ll0 corresponds to the Younger Dryas blozone. The merely slight increase of the NAP indicates that the pine forests of the lowland were not strongly affected by a cooler climate. In order to evaluate the significance of the littoral accumulation of coniferous pollen the littoral profile LQ-150 is compared to the profundal. Radiocarbon stratigraphies derived from different materials are presented in Figures 13 and 14 and in Tables 2 and 3. The hard-water errors in the gyttja samples and the carbonate samples are similar. The samples of terrestrial plant macrofossils are not affected by hard-water errors. Two plateaux of constant age appear in the age-depth relationship; their consequence for biostratigraphy as well as pollen concentration and influx diagrams are discussed. Radiocarbon ages of the Late-Glacial pollen zones are shown in Table 10. The Holocene vegetational history is recorded in the local PAZ L 11 to L30. After a Preboreal (PAZ L11) dominated by pine and birch the expansions of Corylus, Ulmus and Quercus are very rapid. Among these taxa Corylus dominates dur ing the Boreal (PAZ L 12 and L 1 3), whereas the components of the mixed oak forest dominate in the Older Atlantic (PAZ L14 to L16). In the Younger Atlantic (PAZ L 17 to L 19) Fagus and Alnus play an increasing, the mixed oak forest a decreasing role. During the period of local PAZ L19 Neolithic settlers lived on the shore of Lobsigensee. During the Subboreal (PAZ L20 and L21) and the Older Subatlantic (L22 to L25) strong fluctuations of Fagus and often antagonistic peaks of NAP, Alnus, Betula and Corylus can be interpreted as signs of human impact on vegetation. L23 is characterized not only by high values of NAP (especially apophytes and anthropochorous species) but also by the appearance of Juglans, Castanea and Secale which point to the Roman colonization of the area. For a certain period during the Younger Subatlantic (PAZ L26 to L30) the lake was used for retting hemp (Cannabis). Later the dominance of Quercus pollen indicates the importance of wood pastures. The youngest sediments reflect the wide-spread agricultural grass lands and the plantation of Pinus and Picea. Radiocarbon dates for the Holocene are given in Figure 23 and Table 4, the extrapolated ages of the Holocene pollen zones in Table 15. (2) The cross sections: Figures 25 and 26 give a summary of the litho- and palynostratigraphy of the two cross sections. Based on 11 Late-Glacial and 9 Holocene pollen diagrams (in addition to the standard ones), the consistency of the criteria for the definition of the pollen zones is examined in Tables 7 and 8 for the Late-Glacial and in Tables 11 to 14 for the Holocene. Sediment thicknesses across the basin for each pollen zone are presented in these tables as well as in Figures 43 to 45 for the Late-Glacial and in Figures 59 to 65 for the Holocene. Sediment focusing can explain differences between the gyttja cores of the profundal. Focusing is more than compensated for through "stretching" by carbonate precipitation on the littoral terrace. Pollen influx to the cross section are discussed (Chapters 4.1.5. and 4.2.3.). (3) The regional pollen zones: Based on some selected sites between Lake Geneva and Lake Constance regional pollen zones are proposed (Table 16, 17 and 19). (4) Paleoecology: Climatic change in the Late-Glacial can be inferred from Coleoptera, Trichoptera, Chironomidae and d18O of carbonates: a distinct warming is recorded around 12' 600 BP and around 10' 000 BP. The Younger Dryas biozone (10'700-10'000 BP) was the only cooling found in the Late-Glacial. The Betula depression often correlated wi th the Older Dryas biozone was possibl not colder but dryer than the previous period. During the Holocene the lowland site is not very sensitive to the minor climatic changes. Table 22 summarizes climatic and trophic changes before 8'000 BP as deduced from various biostratigraphies studied by a number of authors. Ostracods, Chironomids and fossil pigments indicate that anoxic conditions prevailed during the BoIling (possibly meromixis). Changes in the lake level are illustrated in Figure 74. A first lake-level lowering occurred in the early Holocene (10'000 to 9'000 BP), a second during the Atlantic (about 6'800 to 5'200 BP). The first "shrinking" of the lake volume resulted in a eutrophication recorded by laminations in the profundal and by pigments of Cyanophyceae. The second fall in water level corresponds to an increase of Nymphaeaceae. Human impact can be inferred in three ways: eutrophication of the lake (since the Neolithic), changes of terrestrial vegetation by deforestations (cyclicity of Fagus, see Figures 78 to 80), and enhanced erosion (increasing sedimentation rates by inwashed clay, particularly since the Roman Colonization, see Figures 49 and 81). Summary: This paper was planned as the final report on Lobsigensee. However, a number of issues are not answered but can only be asked more precisely, for example: (1) For the two periods with the highest rates of change, Le. the Bolling and the Preboreal biozones, pollen influx may reflect vegetation dynamics. Detailed investigations of these periods in annually laminated sediments are planned. (2) Biostratigraphies other than palynostratigraphy are needed to estimate the degree of linkage or independence in the development of terrestrial and lacustrine ecosystems. Often our sampling intervals were not identical, thus influencing our temporal resolution. (3) 6180- and 14C-stratigraPhies with high resolution will elucidate the leads and lags of these dynamic periods. Plateaux of constant age in the age-depth relationship have a strong bearing on both biological and geophysical understanding of Late-Glacial and early Holocene developments. (4) Numerical methods applied to the pollen diagrams of the cross section will help to quantify the significance of similari ties and dissimilarities across a single basin (with Prof. Birks). (5) Numerical methods applied to different sites on the Swiss Plateau and on the transect across the Alps will be helpful in evaluating the influence of different environmental factors (with Prof. Birks). (6) A new map 1: 1000 with 50cm-contour lines prov ided by Prof. Zurbuchen will be combined with a grid of cores sampling the transition from lake marl to peat enabling us to calculate paleo-volumes of the lake. This is interesting for the two "shrinking periods" (in Fig. 74A numbers 2-6 and 7-10), both accompanied by eutrophication. The pal eo-volume during the Neoli thic set tlement of the Cortaillod culture linked wi th an est l.mate of trophic change derived from diatoms (Prof. Smol in prep.) could possibly give an indication of the size of the human population of this period. (7) For the period with the antagonism between Fagus peaks and ABC-peaks close collaboration between palynologists, geochemists and archeologists should enable us to determine the influence of prehistoric and historic people on vegetation (collaboration with Prof. Stockli and Prof. Herzig). (8) The core LL-75 taken with a "cold letter box" will be analysed for major and trace elements by Dr. Sturm for 210pb and 137Cs by Prof.von Gunten and for pollen. We will see if our local PAZ L30 really corresponds to the surface sediment and if the small seepage lake reflects modern pollution.
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.