78 resultados para Governmental investigations.
Resumo:
Mesozooplankton production was estimated by using a new sampling technique and two alternative calculation methods. In essence, production estimates are based on significantly higher abundances. The contribution of juvenile stages to copepod and fish dynamics was generally low, so that the omission of juvenile stages in budgets will result in a small error. The situations reported in this study present a unique food web szenario, which in detail, however, was strongly dependent on methodology. Furthermore relations between trophic levels were considered with respect to vertical distribution.
Resumo:
According to monitoring data gained between 1982-1992, macrobenthos in the Tiksi Bay is characterized by low indices of the total abundance, biomass and taxonomic diversity. 30 macrobenthic species have been recorded in the Tiksi Bay. The bottom biocenoses within the estuarine-arctic water mass consist of widespread eurybiontic boreal-arctic and brackish-water species. The maximal number of species was observed at a depth of 8.5 m. The maximum biomass was recorded on muddy grounds. The studied bottom fauna is characterized by a high population density (from 1160-600 ind/m**2) and low biomass of 15.5-22.4 g/m**2. The predominant benthic animals of the main Lena River channel 4.7 km upstream Stolb Island are Chironomidae, Plecoptera and Oligochaeta. In total, 48 species of macrobenthos were registered here. In spring the average density of macrozoobenthos in the channel is 680, in summer 770, in autumn 720 and in winter 380 ind/m**2, with the average biomass varying between 2.9 g/m**2 in spring, 7.06 in summer, 4.4 in autumn, and 2.6 in winter.
Resumo:
Joint interpretation of magnetotelluric and geomagnetic depth sounding data in the western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques. 3d-forward-modelling reveals on the one hand interrupted dipping crustal conductors with maximum conductance of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central western Alps. Graphite networks arising from Paleozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. In conclusion, electromagnetic results can be attributed to the geological, tectonic and palaeogeographical background. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its palaeographic belonging to the Iberian Peninsula.
Resumo:
The decomposition rate of organic, Compounds, following the death of a plant, is dependent on several external factors. Assimilatory pigments generally undergo a rapid degradation. In certain condition, however, their decomposition may be considerably retarded; e.g. compounds similar to chlorophyll and some carotenoids, as a and ß-carotene, lutein and others, may persist several thousand years in marine and lake Sediments (Vallentyne 1960). Derivatives of chlorophyll were also found in the surface layer of wood soil (Gorham 1959). In this connection the question arises, in what a way a still different environment, namely peat, influences the decomposition rate of pigments. The starting point in these investigations was the fact observed by one of the co-authors, that many subfossil fir needles from various depths of the peat bog in Cergowa Gora were bright yellow green pigmented. Macroscopic otoservations have already suggested that, at least, a part of the pigments did not undergo decomposition. A study was undertaken with the aim to determine the quantitative and qualitative changes in assimilatory pigments, occurring in fir needles in dependence on the pexiod of time they were lying in the peat bog.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.
Resumo:
Geochemical investigations were carried out on 19 discrete ash layers and on 42 dispersed ash accumulations in Oligocene to Pleistocene sediments from Sites 736, 737, 745, and 746 of ODP Leg 119 (Kerguelen Plateau in the southern Indian Ocean). The chemical data obtained from more than 500 single-grain glass analyses allow the characterization of two dominant petrographic rock series. The first consists of transitional- to alkali-basalts, the second mainly of trachytes with subordinated alkali-rhyolites and rhyolites. Chemical correlation with possible source areas indicates that the tephra layers from the northern Kerguelen Plateau Sites 736 and 737 were probably erupted from the nearby Kerguelen Islands. The investigated ash layers clearly reflect the Oligocene to recent changes in the composition of the volcanic material recorded from the Kerguelen Islands. The dispersed ashes from Sites 745 and 746 in the Australian-Antarctic Basin display almost the same range in chemical compositions as those from the north. Heard Island and other sources may have contributed to their formation, in addition to the Kerguelen Islands. Dispersed ash of calc-alkaline composition is most probably derived from the South Sandwich island arc, indicating sea-ice rafting as an important mechanism of transport.
Resumo:
Modern seawater profiles of oxygen, nitrate deficit, and nitrogen isotopes reveal the spatial decoupling of summer monsoon-related productivity and denitrification maxima in the Arabian Sea (AS) and raise the possibility that winter monsoon and/or ventilation play a crucial role in modulating denitrification in the northeastern AS, both today and through the past. A new high-resolution 50-ka record of d15N from the Pakistan margin is compared to five other denitrification records distributed across the AS. This regional comparison unveils the persistence of east-west heterogeneities in denitrification intensity across millennial-scale climate shifts and throughout the Holocene. The oxygen minimum zone (OMZ) experienced east-west swings across Termination I and throughout the Holocene. Probable causes are (1) changes in ventilation due to millennial-scale variations in Antarctic Intermediate Water formation and (2) postglacial reorganization of intermediate circulation in the northeastern AS following sea level rise. Whereas denitrification in the world's OMZs, including the western AS, gradually declined following the deglacial maximum (10-9 ka BP), the northeastern AS record clearly witnesses increasing denitrification from about 8 ka BP. This would have impacted the global Holocene climate through sustained N2O production and marine nitrogen loss.
Resumo:
Quartz Crystallographic Preferred Orientation (CPO) patterns are most commonly a result of deformation by dislocation creep. We investigated whether Dissolution-Precipitation Creep (DPC) a process that occur at lower differential stresses and temperatures, may result in CPO in quartz. Within the Purgatory Conglomerate, DPC led to quartz dissolution along cobble surfaces perpendicular to the shortening direction, and quartz precipitation in overgrowths at the ends of the cobbles (strain shadows), parallel to the maximum extension direction. The Purgatory Conglomerate is part of the SE Narragansett basin where strain intensity increases from west to east and is associated with top-to-the-west transport and folding during the Alleghanian orogeny. Quartz c-axis orientations as revealed by Electron Backscatter Diffraction (EBSD) methods, were random in all analyzed domains within the cobbles and strain shadows irrespective of the intensity of strain or metamorphic grade of the sample. Quartz dissolution probably occurred exclusively along the cobbles' margins, leaving the remaining grains unaffected by DPC. The fact that quartz precipitated in random orientations may indicate that the strain shadows were regions of little or no differential stress.
Resumo:
Studies of thermal tolerance in marine ectotherms are key in understanding climate effects on ecosystems; however, tolerance of their larval stages has rarely been analyzed. Larval stages are expected to be particularly sensitive. Thermal stress may affect their potential for dispersal and zoogeographical distribution. A mismatch between oxygen demand and the limited capacity of oxygen supply to tissues has been hypothesized to be the first mechanism restricting survival at thermal extremes. Therefore, thermal tolerance of stage zoea I larvae was examined in two populations of the Chilean kelp crab Taliepus dentatus, which are separated by latitude and the thermal regime. We measured temperature-dependent activity, oxygen consumption, cardiac performance, body mass and the carbon (C) and nitrogen (N) composition in order to: (1) examine thermal effects from organismal to cellular levels, and (2) compare the thermal tolerance of larvae from two environmental temperature regimes. We found that larval performance is affected at thermal extremes indicated by decreases in activity, mainly in maxilliped beat rates, followed by decreases in oxygen consumption rates. Cardiac stroke volume was almost temperature-independent. Through changes in heart rate, cardiac output supported oxygen demand within the thermal window whereas at low and high temperature extremes heart rate declined. The comparison between southern and central populations suggests the adaptation of southern larvae to a colder temperature regime, with higher cardiac outputs due to increased cardiac stroke volumes, larger body sizes but similar body composition as indicated by similar C:N ratios. This limited but clear differentiation of thermal windows between populations allows the species to widen its biogeographical range.
Resumo:
Secular variations in geochemistry and Nd isotopic data have been documented in sediment samples at ODP Site 1148 in the South China Sea. Major and trace elements show significant changes at ca. 29.5 Ma and 26-23 Ma, whereas epsilon-Nd values show a single change at ca. 26-23 Ma. Increases in Al/Ti, Al/K, Rb/Sr, and La/Lu ratios and a decrease in the Th/La ratio of the sediments beginning at 29.5 Ma are consistent with more intense chemical weathering in the source region. The abrupt change in Nd isotopes and geochemistry at ca. 26-23 Ma coincides with a major discontinuity in the sedimentology and physical properties of the sediments, implying a drastic change in sedimentary provenance and environment at the drill site. Comparison of the Nd isotopes of sediments from major rivers flowing into the South China Sea suggests that pre-27 Ma sediments were dominantly derived from a southwestern provenance (Indochina-Sunda Shelf and possibly northwestern Borneo), whereas post-23 Ma sediments were derived from a northern provenance (South China). This change in provenance from southwest to north was largely caused by ridge jumping during seafloor spreading of the South China Sea, associated with a southwestward expansion of the ocean basin crust and a global rise in sea level. Thus, the geochemical and Nd isotopic changes in the sediments at ODP Site 1148 are interpreted as a response to a major plate reorganization in SE Asia at ca. 25 Ma.
Resumo:
The accumulation and distribution of the 2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal d2H variations in the firn. In addition, 3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the d2H values range from about -195 per mil at the ice edge to -250 per mil at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kg/m**2/a. The d2H values of the near-surface firn and the 10 m firn temperatures (Theta) at individual sites are very well correlated: ddelta2H/dTheta=(10.3±0.6)per mil /K; r = 0.97. The d2H profiles of the two ice cores B13 and B15 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in 2H in the firn upstream of the drill sites. Comparison with tlie surface data indicates that the ice above 142 m in core B15 and above 137 m in core B13 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.
Resumo:
Composition, grain-size distribution, and areal extent of Recent sediments from the Northern Adriatic Sea along the Istrian coast have been studied. Thirty one stations in four sections vertical to the coast were investigated; for comparison 58 samples from five small bays were also analyzed. Biogenic carbonate sediments are deposited on the shallow North Adriatic shelf off the Istrian coast. Only at a greater distance from the coast are these carbonate sediments being mixed with siliceous material brought in by the Alpine rivers Po, Adige, and Brenta. Graphical analysis of grain-size distribution curves shows a sediment composition of normally three, and only in the most seaward area, of four major constituents. Constituent 1 represents the washed-in terrestrial material of clay size (Terra Rossa) from the Istrian coastal area. Constituent 2 consists of fine to medium sand. Constituent 3 contains the heterogeneous biogenic material. Crushing by organisms and by sediment eaters reduces the coarse biogenic material into small pieces generating constituent 2. Between these two constituents there is a dynamic equilibrium. Depending upon where the equilibrium is, between the extremes of production and crushing, the resulting constituent 2 is finer or coarser. Constituent 4 is composed of the fine sandy material from the Alpine rivers. In the most seaward area constituents 2 and 4 are mixed. The total carbonate content of the samples depends on the distance from the coast. In the near coastal area in high energy environments, the carbonate content is about 80 %. At a distance of 2 to 3 km from the coast there is a carbonate minimum because of the higher rate of sedimentation of clay-sized terrestrial, noncarbonate material at extremely low energy environments. In an area between 5 and 20 km off the coast, the carbonate content is about 75 %. More than 20 km from the shore, the carbonate content diminishes rapidly to values of about 30 % through mixing with siliceous material from the Alpine rivers. The carbonate content of the individual fractions increases with increasing grain-size to a maximum of about 90 % within the coarse sand fractions. Beyond 20 km from the coast the samples show a carbonate minimum of about 13 % within the sand-size classes from 1.5 to 0.7 zeta¬? through mixing with siliceous material from the alpine rivers. By means of grain-size distribution and carbonate content, four sediment zones parallel to the coast were separated. Genetically they are closely connected with the zonation of the benthic fauna. Two cores show a characteristic vertical distribution of the sediment. The surface zone is inversely graded, that means the coarse fractions are at the top and the fine fractions are at the bottom. This is the effect of crushing of the biogenic material produced at the surface by predatory organisms and by sediment eaters. lt is proposed that at a depth of about 30 cm a chemical solution process begins which leads to diminution of the original sediment from a fine to medium sand to a silt. The carbonate content decreases from about 75 % at the surface to 65 % at a depth of 100 cm. The increase of the noncarbonate components by 10 % corresponds to a decrease in the initial amount of sediment (CaC03=75 %) by roughly 30 % through solution. With increasing depth the carbonate content of the individual fractions becomes more and more uniform. At the surface the variation is from 30 % to 90 %, at the bottom it varies only between 50 % and 75 %. Comparable investigations of small-bay sediments showed a c1ear dependence of sediment/faunal zonation from the energy of the environment. The investigations show that the composition and three-dimensional distribution of the Istrian coastal sediments can not be predicted only from one or a few measurable factors. Sedimentation and syngenetic changes must be considered as a complex interaction between external factors and the actions of producing and destroying organisms that are in dynamic equilibrium. The results obtained from investigations of these recent sediments may be of value for interpreting fossil sediments only with strong limitations.
Resumo:
Near-shore waters along the northwest African margin are characterized by coastal upwelling and represent one of the world's major upwelling regions. Sea surface temperature (SST) records from Moroccan sediment cores, extending back 2500 years, reveal anomalous and unprecedented cooling during the 20th century, which is consistent with increased upwelling. Upwelling-driven SSTs also vary out of phase with millennial-scale changes in Northern Hemisphere temperature anomalies (NHTAs) and show relatively warm conditions during the Little Ice Age and relatively cool conditions during the Medieval Warm Period. Together, these results suggest that coastal upwelling varies with NHTAs and that upwelling off northwest Africa may continue to intensify as global warming and atmospheric CO2 levels increase.
Resumo:
Quasi-periodic variation in sea-surface temperature, precipitation, and sea-level pressure in the equatorial Pacific known as the El Niño - Southern Oscillation (ENSO) is an important mode of interannual variability in global climate. A collapse of the tropical Pacific onto a state resembling a so-called 'permanent El Niño', with a preferentially warmed eastern equatorial Pacific, flatter thermocline, and reduced interannual variability, in a warmer world is predicted by prevailing ENSO theory. If correct, future warming will be accompanied by a shift toward persistent conditions resembling El Niño years today, with major implications for global hydrological cycles and consequent impacts on socioeconomic and ecological systems. However, much uncertainty remains about how interannual variability will be affected. Here, we present multi-annual records of climate derived from growth increment widths in fossil bivalves and co-occurring driftwood from the Antarctic peninsula that demonstrate significant variability in the quasi-biennial and 3-6 year bands consistent with ENSO, despite early Eocene (~50 Mya) greenhouse conditions with global average temperature -10 degrees higher than today. A coupled climate model suggests an ENSO signal and teleconnections to this region during the Eocene, much like today. The presence of ENSO variation during this markedly warmer interval argues for the persistence of robust interannual variability in our future greenhouse world.