361 resultados para Geochemical and digenetic variability
Resumo:
Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.
Resumo:
Pleisto-Pliocene hemipelagic and diatomaceous mud was recovered from Deep Sea Drilling Project (DSDP) Sites 474 through 481 in the Gulf of California. The organic matter is mostly marine and mainly derived from diatomaceous protoplasm. We found some continental organic matter in sediments near the bottom basalts or near dolerites (Holes 474A and 478). The organic matter in most of the samples is in an early stage of evolution.
Resumo:
A brief (~150 kyr) period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM) is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE). Biotic responses include a global abundance peak (acme) of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 - 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.
Resumo:
Here we report 420 kyr long records of sediment geochemical and color variations from the southwestern Iberian Margin. We synchronized the Iberian Margin sediment record to Antarctic ice cores and speleothem records on millennial time scales and investigated the phase responses relative to orbital forcing of multiple proxy records available from these cores. Iberian Margin sediments contain strong precession power. Sediment "redness" (a* and 570-560 nm) and the ratio of long-chain alcohols to n-alkanes (C26OH/(C26OH + C29)) are highly coherent and in-phase with precession. Redder layers and more oxidizing conditions (low alcohol ratio) occur near precession minima (summer insolation maxima). We suggest these proxies respond rapidly to low-latitude insolation forcing by wind-driven processes (e.g., dust transport, upwelling, precipitation). Most Iberian Margin sediment parameters lag obliquity maxima by 7-8 ka, indicating a consistent linear response to insolation forcing at obliquity frequencies driven mainly by high-latitude processes. Although the lengths of the time series are short (420 ka) for detecting 100 kyr eccentricity cycles, the phase relationships support those obtained by Shackleton []. Antarctic temperature and the Iberian Margin alcohol ratios (C26OH/(C26OH + C29)) lead eccentricity maxima by 6 kyr, with lower ratios (increased oxygenation) occurring at eccentricity maxima. CO2, CH4, and Iberian SST are nearly in phase with eccentricity, and minimum ice volume (as inferred from Pacific d18Oseawater) lags eccentricity maxima by 10 kyr. The phase relationships derived in this study continue to support a potential role of the Earth's carbon cycle in contributing to the 100 kyr cycle.
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Mineralogical, geochemical, and lipid biomarker study of cabonate precipitates at station GeoB9908-1
Resumo:
Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low d13C values measured on carbonates (-41 to -32 per mill V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. d18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.
Resumo:
One of the essential problems of oceanic tectonics is estimation of the influence of plumes of the deep hot mantle on processes in the axial spreading zone. Areas of two giant (St. Helena and Tristan da Cunha) plumes in the Mid-Atlantic Ridge (MAR) rift zone (South Atlantic) are characterized by the effusion of basalts that differ from typical depleted riftogenic tholeiites by anomalously high contents of lithophile components and specific isotopic compositions. Moreover, the rift valley floor with basalt effusion is significantly uplifted above the adjacent sectors of the rift. The formation of the St. Helena Seamount located 400 km east of the MAR axis is related to magmatism that is active to this day. St. Helena Island is a member of the structural ensemble of large volcanic seamounts (Bonaparte, Bagration, and Kutuzov). Like St. Helena Island, each seamount incorporates a series of smaller rises of different morphologies and dimensions. Thus, a system of subparallel series of NE-trending (~45°) rises extend from the seamount ensemble to the African continent. According to the plate tectonics concept, the seamount series represent hotspots related to a deep mantle plume that can be projected onto the present-day St. Helena Island area (St. Helena plume). At the same time, the inferred topographic map based on satellite altimetry data shows that the seamount series also extend along the opposite southwestern direction (~225°) toward the axial MAR and even intersect the latter structure. This fact cannot be explained by the hotspot hypothesis, which suggests stationary positions of plumes relative to the mobile oceanic plate. In the course of Cruise 10 of the R/V Akademik Ioffe (2002), detailed geological and geophysical investigations were carried out at the junction of one structural series with the MAR rift zone located near the Martin Vaz Fracture Zone (Martin Vaz test area, 19°-20° S). The present communication is devoted to the study of lithology, geochemistry, and isotopy of basalts dredged at the test area.
Resumo:
In this manuscript, we present the results of a physical properties investigation carried out on basaltic cores recovered from the four Leg 192 basement sites, focusing on the relationship between physical properties and alteration in basalts. Variations in physical properties in the Leg 192 basement sites closely resemble each other and reflect the amount of alteration and vein formation in the basement basalts. P-wave velocities, magnetic susceptibilities, and densities for the dense massive basalts are higher than those of more altered and heavily veined basalts. Porosity-dependent alteration is observed at Leg 192 basement sites: P-wave velocity displays a general decrease with increasing loss on ignition and potassium content. These trends are consistent with trends documented for typical alteration of oceanic crust and suggest that basalt alteration is largely responsible for the variation of the physical properties exhibited by rocks at Leg 192 basement sites. Our physical property data support the conclusion that only low-temperature seawater-mediated alteration occurred in the lava flows of the Ontong Java Plateau (OJP). This lack of higher-temperature hydrothermal alteration is consistent with the idea that the OJP basement sites are far from their eruptive vents.