285 resultados para Seismic facies
Resumo:
Twenty four core samples from CRP-1, seven from Quaternary strata (20-43.55 meters below sea floor or mbsf) and seventeen from early Miocene strata (43.55 to 147.69 mbsf), have been analysed for their grain-size distribution using standard sieve and Sedigraph techniques. The results are in good agreement with estimates of texture made as part of the visual core description for the 1 :20 core logs for CRP-1 (Cape Roberts Science Team, 1998). Interpretation of the analyses presented here takes into account the likely setting of the site in Quaternary times as it is today, with CRP-1 high on the landward flank of a well-defined submarine ridge rising several hundred metres above basins on either side. In contrast, seismic geometries for strata deposited in early Miocene times indicate a generally planar sea floor dipping gently seaward. Fossils from these strata indicate shallow water depths (< 100 m), indicating the possibility that waves and tidal currents may have influenced sea floor sediments. The sediments analysed here are considered in terms of 3 textural facies: diamict, mud (silt and clay) and sand. Most of the Quaternary section but only 30% of the early Miocene section is diamict, a poorly sorted mixture of sand and mud with scattered clasts, indicating little wave or current influence on its texture. Although not definitive, diamict textures and other features suggest that the sediment originated as basal glacial debris but has been subsequently modified by minor winnowing, consistent with the field interpretation of this facies as ice-proximal and distal glaciomarine sediment. Sediments deposited directly from glacier ice appear to be lacking. Mud facies sediments, which comprise only 10% of the Quaternary section but a third of the early Miocene section, were deposited below wave base and largely from suspension, and show features (described elsewhere in this volume) indicative of the influence of both glacial and sediment gravity flow processes. Sand facies sediments have a considerable proportion of mud, normally more than 20%, but a well-sorted fine-very fine sand fraction. In the context of the early Miocene coastal setting we interpret these sediments as shoreface sands close to wave base.
Resumo:
Eight lithologic facies recognized in the Mississippi Fan sediments drilled during DSDP Leg 96 are defined on the basis of lithology, sedimentary structures, composition, and texture. Of these, the calcareous biogenic sediments are of minor importance, volumetrically, as compared with the dominant resedimented terrigenous facies. Clay, mud, and silt are the most abundant sediments at all the sites drilled, with some sand and gravel in the midfan channel fill and an abundance of sand on the lower fan. Facies distribution and vertical sequences reflect the importance of sediment type and supply in controlling fan development. Sea-level changes and diapiric activity have also played an important role. Clay and sand fraction mineralogy closely mirror the dominant sediment source, namely, the Mississippi River system and adjacent continental shelf. Local and regional variation in composition on the fan mostly reflects facies differences.
Resumo:
This is a 20-year long database of GPS data collected by geodetic surveys carried out over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Data have been convertedi nto the international ASCII compressed RINEX standard in order to be imported and processed by any GPS analysis software. Database is provided with an explorer software for navigating into the dataset by spatial (GIS) and temporal queries.
Resumo:
The Belgica Trough and the adjacent Belgica Trough Mouth Fan in the southern Bellingshausen Sea (Pacific sector of the Southern Ocean) mark the location of a major outlet for the West Antarctic Ice Sheet during the Late Quaternary. The drainage basin of an ice stream that advanced through Belgica Trough across the shelf during the last glacial period comprised an area exceeding 200,000 km**2 in the West Antarctic hinterland. Previous studies, mainly based on marine-geophysical data from the continental shelf and slope, focused on the bathymetry and seafloor bedforms, and the reconstruction of associated depositional processes and ice- drainage patterns. In contrast, there was only sparse information from seabed sediments recovered by coring. In this paper, we present lithological and clay mineralogical data of 21 sediment cores collected from the shelf and slope of the southern Bellingshausen Sea. Most cores recovered three lithological units, which can be attributed to facies types deposited under glacial, transitional and seasonally open-marine conditions. The clay mineral assemblages document coinciding changes in provenance. The relationship between the clay mineral assemblages in the subglacial and proglacial sediments on the shelf and the glacial diamictons on the slope confirms that a grounded ice stream advanced through Belgica Trough to the shelf break during the past, thereby depositing detritus eroded in the West Antarctic hinterland as soft till on the shelf and as glaciogenic debris flows on the slope. The thinness of the transitional and seasonally open-marine sediments in the cores suggests that this ice advance occurred during the last glacial period. Clay mineralogical, acoustic sub-bottom and seismic data furthermore demonstrate that the palaeo-ice stream probably reworked old sedimentary strata, including older tills, on the shelf and incorporated this debris into its till bed. The geographical heterogeneity of the clay mineral assemblages in the sub- and proglacial diamictons and gravelly deposits indicates that they were eroded from underlying sedimentary strata of different ages. These strata may have been deposited during either different phases of the last glacial period or different glacial and interglacial periods. Additionally, the clay mineralogical heterogeneity of the soft tills recovered on the shelf suggests that the drainage area of the palaeo-ice stream flowing through Belgica Trough changed through time.
Resumo:
Compressional- and shear-wave velocity logs (Vp and Vs, respectively) that were run to a sub-basement depth of 1013 m (1287.5 m sub-bottom) in Hole 504B suggest the presence of Layer 2A and document the presence of layers 2B and 2C on the Costa Rica Rift. Layer 2A extends from the mudline to 225 m sub-basement and is characterized by compressional-wave velocities of 4.0 km/s or less. Layer 2B extends from 225 to 900 m and may be divided into two intervals: an upper level from 225 to 600 m in which Vp decreases slowly from 5.0 to 4.8 km/s and a lower level from 600 to about 900 m in which Vp increases slowly to 6.0 km/s. In Layer 2C, which was logged for about 100 m to a depth of 1 km, Vp and Vs appear to be constant at 6.0 and 3.2 km/s, respectively. This velocity structure is consistent with, but more detailed than the structure determined by the oblique seismic experiment in the same hole. Since laboratory measurements of the compressional- and shear-wave velocity of samples from Hole 504B at Pconfining = Pdifferential average 6.0 and 3.2 km/s respectively, and show only slight increases with depth, we conclude that the velocity structure of Layer 2 is controlled almost entirely by variations in porosity and that the crack porosity of Layer 2C approaches zero. A comparison between the compressional-wave velocities determined by logging and the formation porosities calculated from the results of the large-scale resistivity experiment using Archie's Law suggest that the velocity- porosity relation derived by Hyndman et al. (1984) for laboratory samples serves as an upper bound for Vp, and the noninteractive relation derived by Toksöz et al. (1976) for cracks with an aspect ratio a = 1/32 serves as a lower bound.
Resumo:
Late Cretaceous and younger sediments dredged from the upper continental slope and canyon walls in the Great Australian Bight Basin between 126° and 136°E broadly confirm the stratigraphy which had been established previously from scattered exploration wells. Late Cretaceous to Early Eocene marine and marginal marine terrigenous sediments are overlain by Middle Eocene and younger pelagic carbonate (fine limestone and calcareous ooze). The samples provide the first evidence of truly marine Maastrichtian sedimentation, with abundant calcareous nannoplankton, on the southern margin of the continent. Other samples of interest include Precambrian sheared granodiorite on the upper slope south of Eyre Terrace, Paleocene phosphatic sediment in 'Eucla' Canyon at 128° 30'E, and terrigenous Early Miocene mudstone at 133° 20' and 134° 50'E. The mudstone is of note as an exception to the uniform pelagic carbonate wackestone and ooze which characterise Middle Eocene and younger sedimentation at all other sites. Fragments of alkali basalt lava of unknown age were recovered in 'Eucla' Canyon. Cores are mostly pelagic calcareous ooze, but those from submarine canyons include terrigenous turbidites.
Resumo:
New results of geomorphological, seismoacoustic, and lithological investigations on the upper continental slope off the Arkhipo-Osipovka Settlement are presented. Here, a large submarine slump was discovered by seismic survey in 1998. The assumed slump body, up to 200 m thick, rises 50-60 m above the valley floor that cuts the slope. Recent semiliquid mud that overlies laminated slope sediments with possible slump deformations flows down in the valley thalweg. Radiocarbon age inversion recorded in a Holocene sediment section of shelf facies recovered from the upper slope points to the gravity dislocation of sediments.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
Here we present a case study of three cold-water coral mounds in a juvenile growth stage on top of the Pen Duick Escarpment in the Gulf of Cadiz; Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and open slope, no actual living cold-water coral has been observed. This multidisciplinary and integrated study comprises geophysical, sedimentological and (bio)geochemical data and aims to present a holistic view on the interaction of both environmental and geological drivers in cold-water coral mound development in the Gulf of Cadiz. Coring data evidences (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath the escarpment. The dominant morphology of the escarpment has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for mound formation near the top of Pen Duick Escarpment is presented by seepage-related carbonate crusts which might have offered a suitable substrate for coral settling. The spatially and temporally variable character and burial stage of the observed open reef frameworks, formed by cold-water coral rubble, provides a possible model for the transition from cold-water coral reef patches towards juvenile mound. These rubble "graveyards" not only act as sediment trap but also as micro-habitat for a wide range of organisms. The presence of a fluctuating Sulphate-Methane Transition Zone has an important effect on early diagenetic processes, affecting both geochemical and physical characteristics, transforming the buried reef into a solid mound. Nevertheless, the responsible seepage fluxes seem to be locally variable. As such, the origin and evolution of the cold-water coral mounds on top of the Pen Duick Escarpment is, probably more than any other NE Atlantic cold-water coral mound province, located on the crossroads of environmental (hydrodynamic) and geological (seepage) pathways.
Resumo:
Cretaceous chert and porcellanite recovered at Site 436, east of northern Honshu, Japan, are texturally and mineralogically similar to siliceous rocks of comparable age at Sites 303, 304, and 307 in the northwest Pacific. These rocks probably were formed by impregnation of the associated pelagic clay with locally derived silica from biogenic and perhaps some volcanic debris. Fine horizontal laminations are the only primary sedimentary structures, suggesting minimal reworking and transport. Collapse breccias and incipient chert nodules are diagenetic features related to silicification and compaction of the original sediment. Disordered opal-CT (d[101] = 4.09 Å) and microgranular quartz (crystallinity index < 1.0) are the two common silica minerals present. Some samples show quartz replacing this poorly ordered opal- CT, supporting the notion that opal-CT does not become completely ordered (i.e., d[101] = 4.04 Å) in some cases before being converted to quartz. The present temperature calculated for the depth of the shallowest chert and porcellanite at this site is 30 °C; this may represent the temperature of conversion of opal-CT to quartz. High reflection coefficients (0.29-0.65) calculated for the boundary between chert-porcellanite and clay-claystone support the common observation that chert is a strong seismic reflector in deep-sea sedimentary sections.
Grain size distribution of the lagoonal deposits within the South Malé Atoll, Maldives, Indian Ocean
Resumo:
Seismic and multibeam data, as well as sediment samples were acquired in the South Malé Atoll in the Maldives archipelago in 2011 to unravel the stratigraphy and facies of the lagoonal deposits. Multichannel seismic lines show that the sedimentary succession locally reaches a maximum thickness of 15-20 m above an unconformity interpreted as the emersion surface which developed during the last glacial sea-level lowstand. Such depocenters are located in current-protected areas flanking the reef rim of the atoll or in infillings of karst dolinas. Much of the 50 m deep sea floor in the lagoon interior is current swept, and has no or very minor sediment cover. Erosive current moats line drowned patch reefs, whereas other areas are characterized by nondeposition. Karst sink holes, blue holes and karst valleys occur throughout the lagoon, from its rim to its center. Lagoonal sediments are mostly carbonate rubble and coarse-grained carbonate sands with frequent large benthic foraminifers, Halimeda flakes, red algal nodules, mollusks, bioclasts, and intraclasts, some of them glauconitic, as well as very minor ooids. Finer-grained deposits locally are deposited in current-protected areas behind elongated faros, i.e., small atolls which are part of the rim of South Malé Atoll. The South Malé Atoll is a current-flushed atoll, where water and sediment export with the open sea is facilitated by the multiple passes dissecting the atoll rim. With an elevated reef rim and tower-like reefs in the atoll interior it is an example of a leaky bucket atoll which shares characteristics of incipiently drowned carbonate banks or drowning sequences as known from the geological record.
Resumo:
Three main depositional sequences have been determined in the seismic records taken off West Spitsbergen (1) a Plio-Pleistocene sequence SPI-I with velocities of 1.7 to 2.8 km/sec; (2) a Pliocene allochthonous sequence SPI-II with velocities of 2.4 to 2.8 km/sec underlying unconformity U1; (3) a pre-Middle Oligocene sequence SPI-III with velocities of 2.9 to 4.8 km/sec underlying a distinct unconformity (U2) and deposited in front of the downfaulted Spitsbergen Platform indicating some opening of the Greenland Sea already before tbe time of magnetic anomaly 13 (36 m.y.b.p.). A marked change in the seismic configuration of the oceanic basement has been observed about 30 to 40 km east of the central Knipovich graben. The transition from the oceanic crust of the Knipovich Ridge to the strongly faulted, continental substratum of the Spitsbergen Platform occurs over a narrow zone and is associated with a pre-Middle Oligocene depocenter.