281 resultados para Earth temperature.
Resumo:
Changes in the strength of Atlantic meridional overturning circulation (AMOC) are known to have profound impacts on global climate. Coupled modelling studies have suggested that, on annual to multi-decadal time scales, a slowdown of AMOC causes a deepening of the thermocline in the tropical Atlantic. However, this process has been poorly constrained by sedimentary geochemical records. Here, we reconstruct surface (UK'37 Index) and thermocline (TEX86H) water temperatures from the Guinea Plateau Margin (Eastern tropical Atlantic) over the last two glacial-interglacial cycles (~ 192 kyr). These paleotemperature records show that periods of reduced AMOC, as indicated by the d13 C benthic foraminiferal record from the same core, coincide with a reduction in the near-surface vertical temperature gradient, demonstrating for the first time that AMOC-induced tropical Atlantic thermocline adjustment exists on longer, millennial time scales. Modelling results support the interpretation of the geochemical records and show that thermocline adjustment is particularly pronounced in the eastern tropical Atlantic. Thus, variations in AMOC strength appear to be an important driver of the thermocline structure in the tropical Atlantic from annual to multi-millennial time scales.
Resumo:
Sediment core GeoB 1023-5 from the eastern South Atlantic was investigated at high temporal resolution for variations of sea-surface temperature (SST) during the past 22 kyr, using the alkenone (UK'37) method. SSTs increased by 3.5°C from about 18°C during the Last Ice Age (21±2 cal kyr BP) to about 21.5°C at 14.5 cal kyr BP. This warming trend associated with the deglaciation phase was followed by a cooling event with lowest SSTs near 20°C, persisting for about 1000 years between 13 and 12 cal kyr BP. The SSTs then continued to increase to about 22.5°C at the Holocene climatic optimum at 7 cal kyr BP, and decreased again during the Late Holocene to a core-top value of 19.8°C that is comparable to modern annual mean SST values. When compared with alkenone SST records from the eastern North Atlantic, our SST record indicates continuous warming throughout the deglaciation phase in the Benguela Current, while its northern counterpart, the Canary Current, experienced prominent cooling during 'Heinrich Event 1' (H1). On the other hand, for the time period corresponding to the 'Younger Dryas' (YD) cooling event, the Benguela SST record exhibits a cold-temperature interval that corresponds to that observed in the eastern North Atlantic SST records. This observation suggests that interhemispheric climate response in Atlantic eastern boundary current systems was different with respect to the two abrupt climate events associated with Termination I. For the H1, the eastern South Atlantic SST record strongly supports the hypothesis that an 'anti-phase' thermal behavior in South Atlantic surface waters was forced by the slowdown of the North Atlantic Deep Water formation during cold spells in the North Atlantic. In contrast, the abrupt cooling in the eastern South Atlantic coincident with the YD period was probably induced by more vigorous global atmospheric circulation, enhancing the upwelling intensity in both eastern boundary current systems. This atmospheric control may have overridden any effect caused by changes in thermohaline circulation on the South Atlantic SSTs during the YD, which leads to the assumption that the thermohaline circulation was already much closer to its interglacial mode during the YD than during the H1.
Resumo:
SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.
Resumo:
A profound global climate shift took place at the Eocene-Oligocene transition (~33.5 million years ago) when Cretaceous/early Palaeogene greenhouse conditions gave way to icehouse conditions (Zachos et al., 2001, doi:10.1126/science.1059412; Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1). During this interval, changes in the Earth's orbit and a long-term drop in atmospheric carbon dioxide concentrations (Pagani et al., 2005, doi:10.1126/science.1110063; Pearson and Palmer, 2000, doi:10.1038/35021000; DeConto and Pollard, 2003, doi:10.1038/nature01290) resulted in both the growth of Antarctic ice sheets to approximately their modern size (Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1) and the appearance of Northern Hemisphere glacial ice (Eldrett et al., 2007, doi:10.1038/nature05591; Moran et al., 2006, doi:10.1038/nature04800). However, palaeoclimatic studies of this interval are contradictory: although some analyses indicate no major climatic changes (Kohn et al., 2004, doi:10.1130/G20442.1; Grimes et al., 2005, doi:10.1130/G21019.1), others imply cooler temperatures (Zanazzi et al., 2007, doi:10.1038/nature05551), increased seasonality (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0) and/or aridity (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0; Sheldon et al., 2002, doi:10.1086/342865; Dupont-Nivet et al., 2007, doi:10.1038/nature05516). Climatic conditions in high northern latitudes over this interval are particularly poorly known. Here we present northern high-latitude terrestrial climate estimates for the Eocene to Oligocene interval, based on bioclimatic analysis of terrestrially derived spore and pollen assemblages preserved in marine sediments from the Norwegian-Greenland Sea. Our data indicate a cooling of ~5 °C in cold-month (winter) mean temperatures to 0-2 °C, and a concomitant increased seasonality before the Oi-1 glaciation event. These data indicate that a cooling component is indeed incorporated in the d18O isotope shift across the Eocene-Oligocene transition. However, the relatively warm summer temperatures at that time mean that continental ice on East Greenland was probably restricted to alpine outlet glaciers.
Resumo:
Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.