Pollen abundances, and temperature and precipitation reconstruction for the Eocene to Oligocene transition in northern high latitudes


Autoria(s): Eldrett, James S; Greenwood, David R; Harding, Ian C; Huber, Matthew
Cobertura

MEDIAN LATITUDE: 70.181878 * MEDIAN LONGITUDE: 0.480027 * SOUTH-BOUND LATITUDE: 66.941400 * WEST-BOUND LONGITUDE: -6.450300 * NORTH-BOUND LATITUDE: 75.489200 * EAST-BOUND LONGITUDE: 6.946800 * DATE/TIME START: 1985-08-03T06:07:00 * DATE/TIME END: 1995-08-07T04:15:00

Data(s)

19/10/2007

Resumo

A profound global climate shift took place at the Eocene-Oligocene transition (~33.5 million years ago) when Cretaceous/early Palaeogene greenhouse conditions gave way to icehouse conditions (Zachos et al., 2001, doi:10.1126/science.1059412; Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1). During this interval, changes in the Earth's orbit and a long-term drop in atmospheric carbon dioxide concentrations (Pagani et al., 2005, doi:10.1126/science.1110063; Pearson and Palmer, 2000, doi:10.1038/35021000; DeConto and Pollard, 2003, doi:10.1038/nature01290) resulted in both the growth of Antarctic ice sheets to approximately their modern size (Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1) and the appearance of Northern Hemisphere glacial ice (Eldrett et al., 2007, doi:10.1038/nature05591; Moran et al., 2006, doi:10.1038/nature04800). However, palaeoclimatic studies of this interval are contradictory: although some analyses indicate no major climatic changes (Kohn et al., 2004, doi:10.1130/G20442.1; Grimes et al., 2005, doi:10.1130/G21019.1), others imply cooler temperatures (Zanazzi et al., 2007, doi:10.1038/nature05551), increased seasonality (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0) and/or aridity (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0; Sheldon et al., 2002, doi:10.1086/342865; Dupont-Nivet et al., 2007, doi:10.1038/nature05516). Climatic conditions in high northern latitudes over this interval are particularly poorly known. Here we present northern high-latitude terrestrial climate estimates for the Eocene to Oligocene interval, based on bioclimatic analysis of terrestrially derived spore and pollen assemblages preserved in marine sediments from the Norwegian-Greenland Sea. Our data indicate a cooling of ~5 °C in cold-month (winter) mean temperatures to 0-2 °C, and a concomitant increased seasonality before the Oi-1 glaciation event. These data indicate that a cooling component is indeed incorporated in the d18O isotope shift across the Eocene-Oligocene transition. However, the relatively warm summer temperatures at that time mean that continental ice on East Greenland was probably restricted to alpine outlet glaciers.

Formato

application/zip, 7 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.770704

doi:10.1594/PANGAEA.770704

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Eldrett, James S; Greenwood, David R; Harding, Ian C; Huber, Matthew (2009): Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459(7249), 969-973, doi:10.1038/nature08069

Palavras-Chave ## = r/w; # = r/w ?; 104-643A; 151-913B; 162-985A; A. verus; Age; AGE; Albiespollenites spp.; Alnipollenites verus; Appendicidites spp.; Aquilapollenites spp.; Azolla spp.; Basopollis/Nudopollis spp.; Basopollis spp.; C. liblarensis; C. liblarensis/microhenrici; C. rhizophorus; C. simplex; Caryapollenites simplex; Cedripites; Chenopodipollis spp.; Cicatricosisporites spp.; CMT; CMT std dev; Comment; Compositoipollenites rhizophorus; Cupuliferoidaepollenites liblarensis; Cyclongranulates; Deltoidospora spp.; Depth; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Ericipites spp.; Event; Foveosporites spp.; Gleicheniidites spp.; H. azollensis; Hydrosporis azollensis; I. hiatus; Ilexpollenites spp.; Inaperturopollenites hiatus; Joides Resolution; Label; Laevigatosporites spp.; Leg104; Leg151; Leg162; Leotrilites spp.; Lon; Lonicera; Lycopodiumsporites spp.; M. coryloides; M. foveosporites; MAP; MAP std dev; MAT; MAT std dev; mbsf; Microfoveolatosporites spp.; Milfordia foveosporites; Momipites coryloides; Monocolpollenites spp.; nearest living relative (NLR); North Greenland Sea; Norwegian Sea; Number of species; Nyssapollenites spp.; Ocean Drilling Program; ODP; ODP sample designation; Osmundacidites spp.; P. mcgregorii; P. platycaryoides; P. vestibulum; Pandaniidites spp.; Piceapollis spp.; Pinus spp.; Pistillipollenites mcgregorii; Platycaryapollenites platycaryoides; Podocarpidites spp.; Pollen indet; Pollen indeterminata; Pollen tot; Pollen total; Polyatriopollenites spp.; Polypodiaceiosporites spp.; Porocolpopollenites vestibulum; Precipitation, annual mean; Precipitation, annual mean, standard deviation; questionable or Lonicera type; r/w; r/w?; r/w ?; r/w Cretaceous; Radialisporis spp.; Retitricolpites spp.; S. polyformosus; Salixpollenites spp.; Sample code/label; Sciadopityspollenites spp.; Sequoiapollenites polyformosus; Spec No; Stereisporites spp.; Striamonoletes spp.; Subtriporopollenites spp.; T. microreticulatus; T. plektosus; T. robustus; T. subtriangulus; Temperature, annual mean; Temperature, annual mean, standard deviation; Temperature, coldest month; Temperature, coldest month, standard deviation; Temperature, warmest month; Temperature, warmest month, standard deviation; Tetracolporopollenites spp.; Tiliaepollenites microreticulatus; Toriosporites spp.; total fauna; Triatriopollenites subtriangulus; Tricolpites spp.; Tricolporopollenites spp.; Trilites spp.; Triplanosporites spp.; Triporopollenites plektosus; Triporopollenites robustus; Triporopollenites spp.; Trudopollis spp.; Tsuga spp.; Types A & B; Ulmus spp.; Verrucosisporites spp.; where NLR 12 or more; WMT; WMT std dev
Tipo

Dataset