253 resultados para 143-868
Resumo:
An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid-Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26'N, 179°33'W; paleodepth 1300-1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The d18O and d13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short-term, single-sample variability than those from higher-latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low-amplitude (0.1-0.8 per mil) oscillations on timescales of 250,000 to 300,000 years correlate between the d13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°-25°C occurred in the earliest Eocene, followed by a rapid cooling of 3-6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. In the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short-term, very rapid negative excursion in d13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal d18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of d18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.
Resumo:
From late middle Eocene through earliest Oligocene, high-latitude regions cooled, and by the end of the period, continental ice sheets existed in Antarctica. Diversity of planktonic microorganisms declined, and modern groups of terrestrial vertebrates originated. Coeval faunal changes in deep-sea benthic foraminifers have been related to cooling of deep waters and increased oxygenation. Cooling, however, occurred globally, whereas species richness declined at high latitudes and not in the tropics. The late Eocene and younger lower-diversity, high-latitude faunas typically contain common Epistominella exigua and Alabaminella weddellensis, opportunistic phytodetritus-exploiting species that indicate a seasonally fluctuating input of organic matter to the sea floor. We speculate that the species-richness gradient and increase in abundance of phytodetritus-exploiting species resulted largely from the onset of a more unpredictable and seasonally fluctuating food supply, especially at high latitudes.
Resumo:
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Resumo:
The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s, a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region ~170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years.
Resumo:
To understand the climate dynamics of hypothesized past greenhouse intervals, it is essential to constrain tropical sea-surface temperatures (SST), yet existing proxy records give conflicting results. Here we present the first Mg/Ca-based study of pre-Quaternary SST and investigate early Paleogene (late Paleocene through late middle Eocene; 58.6-39.8 Ma) tropical temperatures, using planktonic foraminifera belonging to the genus Morozovella from Ocean Drilling Program Site 865 on Allison Guyot (western central equatorial Pacific Ocean). Calcification temperatures similar to or warmer than modern tropical SST are calculated using a range of assumptions regarding diagenesis, temperature calibration, and seawater Mg/Ca. Long-term warming is observed into the early Eocene (54.8-49.0 Ma), with peak SST between 51 and 48 Ma and rapid cooling of 4°C beginning at 48 Ma. These findings are inconsistent with the d18O-based SST previously estimated for this site.
Resumo:
Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their physical (grain-size distribution), mineralogical, and chemical (major elements) composition. On the basis of these data the samples were grouped into sets of samples that most likely originated from the same source area. In addition, shipboard-collected atmospheric meteorological data, modeled 4-day back trajectories for each sampling day and location, and Total Ozone Mapping Spectrometer aerosol index data for the time period of dust collection (February-March 1998) were combined and used to reconstruct the sources of the groups of dust samples. On the basis of these data we were able to determine the provenance of the various dust samples. It appears that the bulk of the wind-blown sediments that are deposited in the proximal equatorial Atlantic Ocean are transported in the lower level (>~900 hPa) NE trade wind layer, which is a very dominant feature north of the Intertropical Convergence Zone (ITCZ). However, south of the surface expression of the ITCZ, down to 5°S, where surface winds are southwesterly, we still collected sediments that originated from the north and east, carried there by the NE trade wind layer, as well as by easterly winds from higher altitudes. The fact that the size of the wind-blown dust depends not only on the wind strength of the transporting agent but also on the distance to the source hampers a direct comparison of the dust's size distributions and measured wind strengths. However, a comparison between eolian dust and terrigenous sediments collected in three submarine sediment traps off the west coast of NW Africa shows that knowledge of the composition of eolian dust is a prerequisite for the interpretation of paleorecords obtained from sediment cores in the equatorial Atlantic.
Resumo:
We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.
Resumo:
Continental margin sediments of SE South America originate from various terrestrial sources, each conveying specific magnetic and element signatures. Here, we aim to identify the sources and transport characteristics of shelf and slope sediments deposited between East Brazil and Patagonia (20°-48°S) using enviromagnetic, major element, and grain-size data. A set of five source-indicative parameters (i.e., chi-fd%, ARM/IRM, S0.3T, SIRM/Fe and Fe/K) of 25 surface samples (16-1805 m water depth) was analyzed by fuzzy c-means clustering and non-linear mapping to depict and unmix sediment-province characteristics. This multivariate approach yields three regionally coherent sediment provinces with petrologically and climatically distinct source regions. The southernmost province is entirely restricted to the slope off the Argentinean Pampas and has been identified as relict Andean-sourced sands with coarse unaltered magnetite. The direct transport to the slope was enabled by Rio Colorado and Rio Negro meltwaters during glacial and deglacial phases of low sea level. The adjacent shelf province consists of coastal loessoidal sands (highest hematite and goethite proportions) delivered from the Argentinean Pampas by wave erosion and westerly winds. The northernmost province includes the Plata mudbelt and Rio Grande Cone. It contains tropically weathered clayey silts from the La Plata Drainage Basin with pronounced proportions of fine magnetite, which were distributed up to ~24° S by the Brazilian Coastal Current and admixed to coarser relict sediments of Pampean loessoidal origin. Grain-size analyses of all samples showed that sediment fractionation during transport and deposition had little impact on magnetic and element source characteristics. This study corroborates the high potential of the chosen approach to access sediment origin in regions with contrasting sediment sources, complex transport dynamics, and large grain-size variability.