629 resultados para Sediment control.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the results of a study aimed at providing radiometric age control on glacial events in the Weddell Sea during the late Quaternary. Sediment cores from the eastern continental shelf, where the East Antarctic ice sheet was grounded, have recovered glacial-marine sediments resting on tills and the latter deposits predate the isotope stage 2 last glacial maximum. Sediment cores from the continental slope and rise sampled a prominent ice-rafted debris layer, and radiocarbon ages indicate that this ice-rafting event took place prior to 26 000 yr B.P. Thus, the combined data indicate that significant deglaciation of the Weddell Sea continental shelf took place prior to the last glacial maximum. Our data also suggest that the ice masses that border the Weddell Sea are more extensive than they were during the previous glacial minimum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (d18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for d18OP. Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi. We found d18OP values in a range from 12.8 per mill to 26.6 per mill, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium d18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans**1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard-Oeschger and Heinrich events**2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial-interglacial cycle**1, 3, 4, 5, or lack an accurate chronology**6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere-ocean-vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate phenomena like the monsoon system, El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are interconnected via various feedback mechanisms and control the climate of the Indian Ocean and its surrounding continents on various timescales. The eastern tropical Indian Ocean is a key area for the interplay of these phenomena and for reconstructing their past changes and forcing mechanisms. Here we present records of upper ocean thermal gradient, thermocline temperatures (TT) and relative abundances of planktic foraminifera in core SO 189-39KL taken off western Sumatra (0°47.400' S, 99°54.510' E) for the last 8 ka that we use as proxies for changes in upper ocean structure. The records suggest a deeper thermocline between 8 ka and ca 3 ka compared to the late Holocene. We find a shoaling of the thermocline after 3 ka, most likely indicating an increased occurrence of upwelling during the late Holocene compared to the mid-Holocene which might represent changes in the IOD-like mean state of the Indian Ocean with a more negative IOD-like mean state during the mid-Holocene and a more positive IOD-like mean state during the past 3 ka. This interpretation is supported by a transient Holocene climate model simulation in which an IOD-like mode is identified that involves an insolation-forced long-term trend of increasing anomalous surface easterlies over the equatorial eastern Indian Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3 - 4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4 per mil lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, d44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal d44/40Ca and Sr/Ca proxy signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glacial-to-Holocene evolution of subarctic Pacific surface water stratification and silicic acid (Si) dynamics is investigated based on new combined diatom oxygen (d18Odiat) and silicon (d30Sidiat) isotope records, along with new biogenic opal, subsurface foraminiferal d18O, alkenone-based sea surface temperature, sea ice, diatom, and core logging data from the NE Pacific. Our results suggest that d18Odiat values are primarily influenced by changes in freshwater discharge from the Cordilleran Ice Sheet (CIS), while corresponding d30Sidiat are primarily influenced by changes in Si supply to surface waters. Our data indicate enhanced glacial to mid Heinrich Stadial 1 (HS1) NE Pacific surface water stratification, generally limiting the Si supply to surface waters. However, we suggest that an increase in Si supply during early HS1, when surface waters were still stratified, is linked to increased North Pacific Intermediate Water formation. The coincidence between fresh surface waters during HS1 and enhanced ice-rafted debris sedimentation in the North Atlantic indicates a close link between CIS and Laurentide Ice Sheet dynamics and a dominant atmospheric control on CIS deglaciation. The Bølling/Allerød (B/A) is characterized by destratification in the subarctic Pacific and an increased supply of saline, Si-rich waters to surface waters. This change toward increased convection occurred prior to the Bølling warming and is likely triggered by a switch to sea ice-free conditions during late HS1. Our results furthermore indicate a decreased efficiency of the biological pump during late HS1 and the B/A (possibly also the Younger Dryas), suggesting that the subarctic Pacific has then been a source region of atmospheric CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From a 10.7 m long gravity core from the Sierra Leone Rise (5°39.5' N, 19°51' W) a detailed oxygen and carbon isotope record of both planktonic and benthonic foraminifera species was obtained extending from the Recent to Jaramillo event. The analysis yielded six major results. 1. Benthos oxygen isotopes varied by 1.8-2.2 per mil from interglacial to glacial times and may indicate a synglacial cooling of North Atlantic Deep Water at 2800 m depth by 1-3°C. 2. Variable anomalies between the benthos and plankton d18O record indicate a cooling of sea-surface temperatures (SST) by up to 6 °C during some glacial stages. 3. Southerly trade winds and equatorial upwelling may excert the primary control off SST variations, in particular of extremee values of cold and warm stages and of the abrupt character of climate transitions and their leads and lags, and finally, of variable sedimentation rates. 4. The benthos d13C record correlates well with the flux and preservation of organic matter. 5. A new time scale, CARPOR, was established from the assumption that terrigenous sediment supply was ± constant bit CaCO3 varied considerably. When applied to the d18O record, three major and numerous short-term variations of sedimentation rates (0.8 to 4.0 cm/kyr) can be distinguished. 6. The climatic record was modified by bioturbation much more strongly during cold than during warm stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface and thermocline conditions of the eastern tropical Indian Ocean were reconstructed through the past glacial-interglacial cycle by using Mg/Ca and alkenone-paleothermometry, stable oxygen isotopes of calcite and seawater, and terrigenous fraction performed on sediment core GeoB 10038-4 off SW Sumatra (~6°S, 103°E, 1819 m water depth). Results show that annual mean surface and thermocline temperatures varied differently and independently, and suggest that surface temperatures have been responding to southern high-latitude climate, whereas the more variable thermocline temperatures were remotely controlled by changes in the thermocline temperatures of the North Indian Ocean. Except for glacial terminations, salinity proxies indicate that changing intensities of the boreal summer monsoon did not considerably affect annual mean conditions off Sumatra during the past 133,000 years. Our results do not show a glacial-interglacial pattern in the thermocline conditions and reject a linear response of the tropical Indian Ocean thermocline to mid- and high-latitude climate change. Alkenone-based surface temperature estimates varied in line with the terrigenous fraction of the sediment and the East Asian winter monsoon proxy records at the precession band suggestive of monsoon (sea level) to be the dominant control on alkenone temperatures in the eastern tropical Indian Ocean on sub-orbital (glacial-interglacial) timescales.