Geochemistry of sediment cores from METEOR cruise M76/1b
Cobertura |
MEDIAN LATITUDE: -25.800083 * MEDIAN LONGITUDE: 13.165886 * SOUTH-BOUND LATITUDE: -28.000000 * WEST-BOUND LONGITUDE: 9.999833 * NORTH-BOUND LATITUDE: -24.053167 * EAST-BOUND LONGITUDE: 14.389167 * DATE/TIME START: 2008-04-14T07:53:00 * DATE/TIME END: 2008-05-09T14:03:00 |
---|---|
Data(s) |
11/04/2011
|
Resumo |
Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (d18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for d18OP. Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi. We found d18OP values in a range from 12.8 per mill to 26.6 per mill, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium d18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system. |
Formato |
application/zip, 22 datasets |
Identificador | |
Idioma(s) |
en |
Publicador |
PANGAEA |
Relação |
Kraft, Angelina; Engelen, Bert; Goldhammer, Tobias; Lin, Yu-Shih; Cypionka, Heribert; Könneke, Martin (2013): Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area|. FEMS Microbiology Ecology, 84(1), 86-97, doi:10.1111/1574-6941.12039 Lagostina, Lorenzo; Goldhammer, Tobias; Røy, Hans; Evans, Thomas W; Lever, Mark A; Jørgensen, Bo Barker; Petersen, Dorthe G; Schramm, Andreas; Schreiber, L (2015): Ammonia-oxidizing Bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing Archaea in oligotrophic surface sediments near the South Atlantic Gyre. Environmental Microbiology Reports, 7(3), 404-413, doi:10.1111/1758-2229.12264 |
Direitos |
Access constraints: access rights needed |
Fonte |
Supplement to: Goldhammer, Tobias; Brunner, Benjamin; Bernasconi, Stefano M; Ferdelman, Timothy G; Zabel, Matthias (2011): Phosphate oxygen isotopes: Insights into sedimentary phoshorus cycling from the Benguela upwelling system. Geochimica et Cosmochimica Acta, 75(13), 3741-3756, doi:10.1016/j.gca.2011.04.006 |
Palavras-Chave | #[NH4]+; [SO4]2-; Al; Alkalinity, total; Aluminium; Ammonium; AT; B; Boron; Br-; Bromide; Ca; Calcium; Carbon, inorganic, dissolved; Center for Marine Environmental Sciences; Chloride; Cl-; CO2 liberation, IR absorption; Depth; DEPTH, sediment/rock; DIC; Electrode; Fe; Fe2+; Gas separation, conductivity detection; ICP-OES, cross-flow nebulizer; Ion chromatography; Iron; Iron 2+; K; Magnesium; Manganese; MARUM; Mg; Mn; P; pH; Phosphate; Phosphorus; PO4; Potassium; S; Si; Silicon; Spectral photometry, ferrospectral complex; Spectral photometry, molybdenum blue; Sr; Strontium; Sulphate; Sulphur; Titration, chloride (Grasshoff et al., 1983, Verlag Chemie GmbH Weinheim) |
Tipo |
Dataset |