263 resultados para RICH SIO2
Resumo:
Thirty-five samples from Hole 778A were prepared for X-ray diffraction (XRD) mineralogical analyses and for chemical analyses of major and trace elements. Most of the selected samples were silt- and sand-sized sedimentary serpentinites or microbreccias except for a soft clast of mafic rock, a hard clast of massive serpentinized peridotite, and a pebble of consolidated, undeformed serpentine microbreccia that contained planktonic foraminifers. Both mineralogical and geochemical analyses allow discrimination of three groups among the analyzed samples. These groups correspond to three stratigraphic intervals present along the drilled section. Group A contains the upper samples (lithologic Unit I). These consist of poorly consolidated serpentine muds carrying hard-rock clasts (serpentinized peridotites, metabasalts). They are characterized by the following mineralogical assemblage: serpentine, Fe-oxides and hydroxides, aragonite, and halite. They exhibit variable SiO2, MgO contents, but are characterized by a SiO2/MgO ratio near 1. CaO content is high in relation to development of aragonite. Al2O3 content is low. Relatively high K2O, Na2O, and Sr contents are present, presumably in relation to interactions with seawater. Group B (30-77 mbsf) contains samples exhibiting very homogeneous chemical and mineralogical compositions. They consist of serpentinite microbreccias exhibiting frequent shear structures. Hard-rock clasts are also present (serpentinized peridotites, metabasalts, one possible chert fragment). The mineralogy of the Group B samples is characterized by the presence of serpentine and authigenic minerals: hydroxycarbonates and hydrogrossular. Calcite and chlorite are also present, but all the samples lack aragonite. Their chemical compositions are remarkably similar to compositions of their parent rocks. Group C contains silt- and sand-sized serpentine and serpentine microbreccias, which are locally rich in red clasts, probably strongly altered (oxidized?) mafic fragments. Intervals having clasts of more diverse origin than those higher in the section were recovered. Clast lithology includes serpentinized peridotites, metabasalts, metavolcaniclastite, meta-olivine gabbro, and amphibolite sandstone. Mineralogy and geochemistry reflect these compositions. Serpentine content of the samples is less than in previous groups. Correlatively, sepiolite, palygorskite, and chlorite-smectite are mineral phases present in the analyzed samples. Accessory igneous minerals (amphiboles, pyroxenes, hematite) also were found. The chemical compositions of most of Group C samples differ from that of massive serpentinized peridotites. The main differences are (1) higher SiO2, CaO, TiO2 and Al2O3 contents, (2) a SiO2/MgO ratio greater than 1, and (3) a negative correlation between Al2O3, and MgO, Cr, and Ni. These characteristics suggest new constraints relative to the flow structure of the flank of Conical Seamount.
Resumo:
Drilling of the distal Newfoundland margin at Ocean Drilling Program Site 1277 recovered part of the transition between exhumed sub-continental mantle lithosphere and normal mid-ocean-ridge basalt (N-MORB) volcanism perhaps related to the initiation of seafloor spreading, which may have occurred near the Aptian/Albian boundary, coincident with the final separation of subcontinental mantle lithosphere. Subcontinental mantle lithosphere was recovered near the crest of a basement high, the Mauzy Ridge. This ridge lies near magnetic Anomaly M1 and is inferred to be of Barremian age. The recovered section is dominated by serpentinized spinel harzburgite, with subordinate dunite and minor gabbroic intrusives, and it includes inferred high-temperature ductile shear zones. The serpentinite is capped by foliated gabbro cataclasite that is interpreted as the product of a major seafloor extensional detachment. The serpentinized harzburgite beneath is highly depleted subcontinental mantle lithosphere that was exhumed to create new seafloor within the ocean-continent transition zone. After inferred removal of overlying brittle crust, the detachment was eroded, producing multiple mass flows that were dominated by clasts of serpentinite and gabbro in a lithoclastic and calcareous matrix. Basaltic lavas were erupted spasmodically, mainly as sheet flows, with subordinate lava breccia, hyaloclastite, and possible pillow lava. The sedimentary-volcanic succession and the exhumed mantle lithosphere experienced later high-angle extensional fracturing and probably faulting. Extensional fissures opened incrementally and were filled with silt-sized carbonate, basalt-derived clastic sediment, and hyaloclastite, forming neptunian dykes and geopetal structures. Chemical analysis of representative basalts for major elements and trace elements were made using a high-precision, high-accuracy X-ray fluorescence method (utilizing increased count times) and by whole-rock inductively coupled plasma-mass spectrometry that yielded additional evidence for rare earth elements. The analyses indicate N-MORB to slightly enriched compositions. The MORB was produced by relatively high degree melting of a fertile mantle source that differed strongly from the cored serpentinized peridotites. The basalts exhibit a distinct negative Nb anomaly on MORB-normalized plots that can be explained by prior extraction of melt from upper mantle that had previously been affected by subduction, possibly during closure of the Iapetus or Rheic oceans. In the proposed interpretation, mantle lithosphere was exhumed to the seafloor and experienced mass wasting to form serpentinite-rich mass flows. The interbedded MORB records the beginning of a transition to "normal" seafloor spreading. This interpretation takes into account drilling results from the Iberia-Galicia margin and the Jurassic Alps-Apennines.
Resumo:
Subcontinuously cored early(?)-middle Miocene to recently deposited sediments from ODP Site 645 were studied texturally, mineralogically, and geochemically. The entire sequence contains minerals and associated chemical elements that are chiefly of detrital origin. In particular, the clay minerals, which include smectite, kaolinite, chlorite, and illite, are detrital. No obvious evidence of diagenesis with depth, of burial, of volcanism, or of hydrothermal alteration was observed. The sedimentary textures, clay mineralogy, and <2-µm fraction geochemistry of the early middle Miocene sediments (630 to 1147 mbsf) suggest the pronounced but variable influence of a southward bottom current. Two clay facies are defined. The lower one, Cj (780 to 1147 mbsf), is characterized by the great abundance of discrete smectite (with less than 15% illite interlayers), probably detrital in origin, and reworked older, discrete, smectite-rich sediments. The upper clay facies, C2 (630 to 780 mbsf), shows a net decrease of the fully expandable clay abundances, with a great abundance of mixed-layer, illite-smectite clays (60 to 80% of illite interlayers). Such clay assemblages can be inherited from paleosoils or older sedimentary rocks. An important change occurs at 630 mbsf (clay fraction) or 600 mbsf (sedimentary texture), which may be explained by the beginning of continental glaciation (630 mbsf, ~9 Ma) and the onset of ice rafting in Baffin Bay (600 mbsf, ~8 Ma). Above this level, the characteristics and modifications of the clay assemblages are controlled climatically and can be explained by the fluctuations of (1) ice-rafting, (2) speed of weak bottom currents, and (3) some supply by mud turbiditic currents. Three clay facies (C3, C4, and C5) can be defined by the abrupt increases of the inherited chlorite and illite clays.
Resumo:
Surveys of the areas surrounding the sites drilled on the Leg 92 19°S transect showed that sedimentation at all except the oldest site is dominated by calcium carbonate deposition. The sediments in the area of the oldest site, west of the Austral Fracture Zone, are being deposited beneath the calcium carbonate compensation depth and are dominated by terrigenous and metal-rich hydrogenous and hydrothermal sediments. The noncarbonate sediments in all of the areas east of the Austral Fracture Zone are dominated by hydrothermal sediment similar in composition to that presently being deposited at the East Pacific Rise. Although no biogenic microfossils were present in smear slides of the sediment, geochemical partitioning suggests that a remnant signal of siliceous biogenic deposition may be preserved, especially in gravity core (GC) 8, which was collected from a high heat flow zone near Site 600. The siliceous sediment may also result from the deposition of amorphous hydrothermal silica from the higher concentrations of pore water SiO2 characteristic of the upwelling waters. Sedimentation on the broad plateaus that characterize each area is quite uniform and suggests that sites on these plateaus will be broadly representative of pelagic sedimentation in the area.
Resumo:
Electron microprobe data are presented for clinopyroxenes, plagioclases, palagonites, smectites, celadonites, and zeolites in Hole 462A sheet-flow basalts and Site 585 volcaniclastic sediments. Glomerocrystic clinopyroxenes in Hole 462A are predominantly Ti-poor augites with minor fractionation to ferroaugites in rim portions. Quenched plumose clinopyroxenes show considerable variation from Ca-rich to Ca-poor augites, although all are characterized by being Tirich and Cr-poor relative to the glomerocrysts. Two differentiated series of Site 585 pyroxene compositions, calcic augite and diopside-salite, demonstrate the coexistence, in the vitric and lithic clasts, of tholeiitic and alkali basalt types, respectively. Plagioclase compositions in all samples are mainly labradorites, although some zoned Hole 462A glomerocrysts range from An73 to An20 and are characterized by high Mg and Fe contents in the more calcic varieties. The K content of the plagioclases is highest in the more sodic crystals, although the overall higher orthoclase component of Site 585 plagioclases reflects the generally higher bulk-rock K content. The compositions of both secondary smectites and celadonites are similar irrespective of the alteration location (glass, matrix, vesicles, etc.), although brown smectites replacing interstitial glass have marginally higher total Fe contents than pale green and yellow smectites. Analyzed zeolites are mainly phillipsites with variable alkali content, and, together with associated celadonite, represent late-stage alteration repositories for K under mildly oxidizing conditions. The compositions of both early and late secondary minerals are typical of those formed by the submarine alteration of basaltic rocks at low temperatures.
Resumo:
About one hundred samples of sediments and rocks recovered in Hole 603B were analyzed for type, abundance, and isotopic composition of organic matter, using a combination of Rock-Eval pyrolysis, C-H-N-S elemental analysis, and isotope-ratio mass spectrometry. Concentrations of major, minor, and trace inorganic elements were determined with a combination of X-ray fluorescence and induction-coupled plasma spectrometry. The oldest strata recovered in Hole 603B (lithologic Unit V) consist of interbedded light-colored limestones and marlstones, and black calcareous claystones of Neocomian age. The inorganic and organic geochemical results suggest a very terrigenous aspect to the black claystones. The organic geochemical results indicate that the limestones and marlstones contain a mixture of highly degraded marine and terrestrial organic matter. Comparison of the Neocomian carbonates at Site 603 with those on the other side of the North Atlantic, off Northwest Africa at Site 367, shows that the organic matter at Site 367 contains more marine organic matter, as indicated by higher pyrolysis hydrogen indices and lighter values of d13C. Comparison of inorganic geochemical results for the carbonate lithologies at Site 603 with those for carbonate lithologies at Site 367 suggests that the Site 603 carbonates may contain clastic material from both North American and African sources. The black claystones at Site 603, on the other hand, probably were derived almost entirely from North American clastic sources. Lithologic Unit IV overlying the Neocomian carbonates, consists of interbedded red, green, and black claystones. The black claystones at Site 603 contain more than ten times the organic carbon concentration of the interbedded green claystones. The average concentration of organic carbon in the black claystones (2.8%), however, is low relative to most mid-Cretaceous black claystones and shales in the Atlantic, particularly those found off Northwest Africa. The geochemical data all suggest that the organic matter in the black claystones is more abundant but generally more degraded than the organic matter in the green claystones, and that it was derived mainly from terrestrial sources and deposited in oxygenated bottom waters. The increased percentage of black claystone beds in the upper Cenomanian section, and the presence of more hydrogen-rich organic matter in this part of the section, probably resulted from the increased production and accumulation of marine organic matter that is represented worldwide near the Cenomanian/Turonian boundary in deep-sea and land sections. A few upper Cenomanian black claystone samples that have hydrogen indices > 150 also contain particularly high concentrations of V and Zn. Most samples of black claystone, however, are not particularly metal-rich compared with other black claystones and shales. Compared with red claystones from lithologic Unit IV, the green and black claystones are enriched in many trace transition elements, especially V, Zn, Cu, Co, and Pb. The main difference between the "carbonaceous" claystones of lithologic Unit IV and "variegated" or "multicolored" claystones of the overlying Upper Cretaceous to lower Tertiary Unit III is the absence of black claystone beds. As observed at several other sites (105 and 386), the multicolored claystones at Site 603 are somewhat enriched in several trace transition elements-especially Cu, Ni, and Cr-relative to most deep-sea clays. The multicolored claystones are not enriched in Fe and Mn, and therefore are not "metalliferous" sediments in the sense of those found at several locations in the eastern Pacific. The source of the slightly elevated concentrations of transition metals in the multicolored claystones probably is upward advection and diffusion of metals from the black claystones of the underlying Hatteras Formation. The red, orange, and green claystone beds of lithologic Unit II (Eocene), like those of Unit III, really represent a continuation of deposition of multicolored claystone that began after the deposition of the Neocomian carbonates. The color of the few black beds that occur within this unit results from high concentrations of manganese oxide rather than high concentrations of organic matter.
Resumo:
This chapter documents the chemical changes produced by hydrothermal alteration of basalts drilled on Leg 83, in Hole 504B. It interprets these chemical changes in terms of mineralogical changes and alteration processes and discusses implications for geochemical cycling. Alteration of Leg 83 basalts is characterized by nonequilibrium and is heterogeneous on a scale of centimeters to tens or hundreds of meters. The basalts exhibit trends toward losses of SiO2, CaO, TiO2; decreases in density; gains of MnO, Na2O, CO2, H2O+ , S; slight gains of MgO; increased oxidation of Fe; and variable changes in A12O3. Some mobility of rare earth elements (REE) also occurred, especially the light REE and Eu. The basalts have lost Ca in excess of Mg + Na gains. Variations in chemical trends are due to differing water/rock ratios, substrate control of secondary mineralogy, and superimposition of greenschist and zeolite facies mineralogies. Zeolitization resulted in uptake of Ca and H2O and losses of Si, Al, and Na. These effects are different from the Na uptake observed in other altered basalts from the seafloor attributed to the zeolite facies and are probably due to higher temperatures of alteration of Leg 83 basalts. Basalts from the transition zone are enriched in Mn, S, and CO2 relative to the pillow and dike sections and contain a metal-sulfide-rich stockwork zone, suggesting that they once were located within or near a hydrothermal upflow zone. Samples from the bottom of the dike section are extensively fractured and recrystallized indicating that alteration was significantly affected by local variations in permeability.
Resumo:
As is less toxic than Hg, Cd, Pb, Se, Zn, and Cu. The As clarke for clays and shales is 10 ppm. Our samples of bottom sediments from Kurshskii Bay were determined to contain from 15 to 26 ppm As and up to 34 ppm As in the vicinity of the Neman River mouth. Elevated As concentrations (50-114 ppm) were detected in four columns of subsurface bottom sediments (at depths of 10-65 cm) from the Vistula Lagoon. Elevated As concentrations (50-180 ppm) were also found in a few surface samples of sand from the Gdansk Deep near oil platform D-6. These sediments are either partly contaminated with anthropogenic As or contain Fe sulfides and glauconite, which can concentrate As and contain its elevated concentrations. The As concentration in columns of bottom sediments from the Gulf of Finland were at the natural background level (throughout the columns) typical of the area (9-34 ppm). We repeatedly detected very high As concentrations (up to 227 ppm As) in politic ooze from Bornholm Deep, in the vicinity of the sunken vessel with chemical weapons. The sources of elevated As concentrations in the Baltic Sea are the following: (1) chemical weapon (CW) material buried in the floor of the Baltic Sea; (2) As-bearing pesticides, agricultural mineral fertilizers, and burned coal and other fuels; (3) kerogen-bearing Ordovician rocks exposed on the bottom; and (4) As-rich Fe sulfides brought to the area together with construction sand and gravel. This mixture was used in paper production and for the construction of hydraulic engineering facilities in the Vistula Lagoon in the early 20th century and later caused the so-called lagoon disease.
Resumo:
Abundant iron-titanium (Fe-Ti) oxide gabbro, olivine gabbro, and troctolite were drilled at Hole 735B adjacent to the Atlantis II Fracture Zone of the Southwest Indian Ridge during Leg 118. The Fe-Ti oxide gabbro occurs as intrusive bodies into olivine gabbro with very sharp intrusive contacts. The size of the intrusive bodies varies from a millimeter to a few tens of meters. Mineralogical parameters, such as anorthite content of plagioclase and Mg/(Mg+Fe) ratios of mafic minerals exhibit bimodal distributions corresponding to olivine and Fe-Ti oxide gabbros, respectively. When the two major gabbro types are looked at separately, several downhole mineralogical cycles are recognized. The Fe-Ti oxide gabbros exhibit two such cycles with plagioclase becoming more sodic and mafic minerals becoming more iron-rich downward in the drill core. The olivine gabbros and troctolites, however, exhibit two cycles showing an upward increase in sodium in plagioclase and iron in mafic minerals. The mineralogical variations of these gabbros and the intrusive contact relationships probably resulted from downward intrusion of evolved magma into underlying solid or almost solidified olivine gabbros and troctolite. The dense evolved melt at the top of the cumulus pile probably formed from the crystallization of olivine gabbro cumulates followed by extreme fractional crystallization of residual melt in an isolated, ephemeral magma chamber. The interlayered occurrence of evolved and primitive gabbros from Hole 735B represents a typical section of lower ocean crust formed at a very slow spreading ridge.
Resumo:
We measured oxygen-isotope compositions of 16 siliceous rocks from Deep Sea Drilling Project Sites 463, 464, 465, and 466 (Leg 62). Samples are from deposits that range in age from about 40 to 103 m.y. and that occur at sub-bottom depths of 9 to 461 meters. Mean d18O values range from 28.4 to 36.8 per mil and 36.0 ± 0.3 per mil for quartz-rich and opal-CTrich rocks, respectively. d18O values in chert decrease with increasing sub-bottom depth; the slope of the d18O/depth curve is less steep for Site 464 than for the other sites which indicates that chert at Site 464 formed at higher temperatures than chert at Sites 463, 465, and 466. Temperatures of formation of cherts were 7 to 42°C, using the silica-water fractionation factor of Knauth and Epstein (1976), or 19 to 56°C, using the equation of Clayton et al. (1972). Temperatures in the sediment where the cherts now occur are lower than their isotopically determined temperatures of formation, which means that the cherts record an earlier history when temperatures in the sediment section were greater. Estimated sediment temperatures when the cherts formed are comparable to, but generally slightly lower than, those calculated from Knauth and Epstein's equation. The isotopic composition of cherts is more closely related to environment of formation (diagenetic environment) or paleogeothermal gradients, than to paleoclimates (bottom-water temperatures). Opal-CT-rich rocks may better record paleo-bottom-water temperature. In Leg 62 cherts, better crystallinity of quartz corresponds to lower d18O values; this implies progressively higher temperatures of equilibration between quartz and water during maturation of quartz. The interrelationship of d18O and crystallinity is noted also in continental-margin deposits such as the Monterey Formation - but for higher temperatures. The apparent temperature difference between open-ocean and continental-margin deposits can be explained by the dominant control of temperature on silica transformation in the rapidly deposited continental-margin deposits, whereas time, as well as temperature, has a strong influence on the transformations in open-ocean deposits. Comparisons between the chemistry and d18O values of cherts reveal two apparent trends: both boron and SiO2 increase as d18O increases. However, the correspondence between SiO2 and d18O is only apparent, because the two cherts lowest in SiO2 are also the most deeply buried, so the trend actually reflects depth of burial. The correspondence between boron and d18O supports the conclusion that boron is incorporated in the quartz crystal structure during precipitation
Resumo:
The backarc glasses recovered during Ocean Drilling Program Leg 135 are unique among submarine tholeiitic glasses with respect to their oxygen fugacity and sulfur concentrations. Unlike mid-ocean-ridge basalt glasses, fO2 in these samples (inferred from ratios Fe3+/Fe2+) is high and variable, and S variations (90-1140 ppm) are not coupled with FeO concentration. Strong correlations occur between the alkali and alkaline-earth elements and both fO2 (positive correlations) and S concentrations (negative correlations). Correlations between fO2 and various trace elements are strongest for those elements with a known affinity for hydrous fluids (perhaps produced during slab dehydration), suggesting the presence of a hydrous fluid with high fO2 and high alkali and alkaline earth element concentrations in the Lau Basin mantle. Concentrations of S and fO2 are strongly correlated; high fO2 samples are characterized by low S in addition to high alkali and alkaline earth element concentrations. The negative correlations between S and these trace elements are not consistent with incompatible behavior of S during crystallization. Mass balance considerations indicate that the S concentrations cannot result simply from mixing between low-S and high-S sources. Furthermore, there is no relationship between S and other trace elements or isotope ratios that might indicate that the S variations reflect mixing processes. The S variations more likely reflect the fact that when silicate coexists with an S-rich vapor phase the solubility of S in the silicate melt is a function of fO2 and is at a minimum at the fO2 conditions recorded by these glasses. The absence of Fe-sulfides and the high and variable vesicle contents are consistent with the idea that S concentrations reflect silicate-vapor equilibria rather than silicate-sulfide equilibria (as in MORB). The low S contents of some samples, therefore, reflect the high fO2 of the supra-subduction zone environment rather than a low-S source component.
Resumo:
In the Tyrrhenian Sea (Western Mediterranean), unusual reddish, soft to lithified, dolomitic sediments up to 45 m thick overlie igneous crust at the base of thick Pliocene-Quaternary deep-sea sediment successions in the Marsili (Site 650) and Vavilov (Site 651) basins. These sediments also overlie the Gortani Ridge, a basaltic Seamount near the base of the Sardinian continental margin (Site 655). At both basinal sites (650, 651), the lowest sediments are dolomitic, with manganese oxide (MnO) segregations. Whole-rock X-ray diffraction indicates abundant dolomite and quartz, with subordinate calcite, illite (authigenic), feldspar and minor kaolinite, chlorite, and anhydrite. Chemical analyses show strong enrichment in magnesium oxide (MgO) and MnO relative to shale or deep-sea clay. Mg and Mn correlate positively and exhibit decreasing concentrations up the succession in the Marsili Basin (Site 650). The following scenario is proposed: peridotites were exposed on the seafloor in the Vavilov Basin (Site 651) and then eroded, depositing talc in local fine-grained dolomitic sediments within the igneous basement. After local magmatism ended, the igneous basement at each site subsided rapidly (about 800 m/m.y.) and was blanketed with calcareous and clay-rich oozes. During early diagenesis (from isotopic evidence; McKenzie et al., this volume) tepid fluids, of modified seawater composition, reacted with and dolomitized the overlying deep-sea sediments. At Site 651 additional Mg may have been extracted from asthenosphere peridotite cored at shallow depths (about 100 m). One can hypothesize that fluids rich in Mg and Mn were flushed from the igneous basement, triggered by extensional faulting and local tilting during subsidence of the basement, and that these fluids then dolomitized the base of the overlying sediment succession. Late tectonic movements in the Vavilov Basin (Site 651) fractured already lithified dolomitic sediments and more reducing (? hydrothermal) fluids locally remobilized Fe and Mn and corroded dolomite crystals.
Resumo:
In the South Atlantic, at Sites 519 to 523, the dissolution of calcareous oozes ended in the formation of red clays rich in iron and manganese. The early authigenesis of manganese oxides and clays is described in Miocene marly calcareous oozes. The mineralogical and geochemical influences of basaltic basement weathering are shown by the occurrence of palagonite, authigenic clays, and oxides in the basal sediments. The development of red clay facies can be inhibited by local topographic and paleoceanographic changes, as at Site 520.
Resumo:
Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.
Resumo:
Chemical analyzes show that interstitial waters from ore-bearing bottom sediments of the Atlantis II and Discovery Deeps are enriched in Fe, Mn, Cu, Ni, Co, Zn, Pb, and Cd compared to sea water. Enrichment factors of these trace elements in the interstitial waters of the Atlantis II Deep relative to the sea water vary within the following ranges: for Fe from 100 to 7000, for Mn from 19047 to 32738, for Zn from 500 to 1600, for Pb from 78333 to 190000, for Cu from 107 to 654. Comparison of average weighted concentrations of Fe, Mn, Zn, Pb, Cu, Ni in the bottom sediments and the interstitial waters of the Atlantis II Deep indicates common regularities and good relationship in distribution of these elements along sediment cores. Differences in concentrations and distribution of the studied trace elements in the interstitial waters of the Atlantis II and Discovery Deeps result from different chemical compositions of hydrothermal fluids entering these deeps.