347 resultados para paleoclimate
Resumo:
On the basis of the radiocarbon (14C) plateau-tuning method a new age model for Timor Sea Core MD01-2378 was established. It revealed a precise centennial-scale phasing of climate events in the ocean, cryo-, and atmosphere during the last deglacial and provides important new insights into causal linkages controlling events of global climate change. At Site MD01-2378 reservoir ages of surface waters dropped from 1600 yr prior to 20 cal ka to 250-500 yr after 18.8 cal ka. This evidence was crucial for generating a high-resolution age model for deglacial events in the Indo-Pacific Warm Pool. Sea-surface temperatures (SST) started to change near 18.8 cal ka, that is ~500 yr after the start of, presumably northern hemispheric, deglacial melt and sea level rise as shown by the benthic foraminiferal oxygen isotope ratio (d18O). However, the SST rise occurred 500-1000 yr prior to the onset of deglacial Antarctic warming and the first major rise in atmospheric carbon dioxide at about 18 ka. The increase in SST may partly reflect reduced seasonal upwelling of cold subsurface waters along the eastern margin of the Indian Ocean, which is reflected by a doubling of the thermal gradient between the sea surface and the thermocline, a halving of chlorin productivity from 19 to 18.5 cal ka, and in particular, by the strong decrease in surface water reservoir ages. Two significant increases in deglacial Timor Sea surface salinities from 19-18.5 and 15.5-14.5 cal ka, may partly reflect the deglacial increase in the distance of local river mouths, partly an inter-hemispheric millennial-scale see-saw in tropical monsoon intensity, possibly linked to a deglacial increase in the dominance of Pacific El Niño regimes over Heinrich stadial 1.
Resumo:
We present a detailed palaeoclimate analysis of the Middle Miocene (uppermost Badenian-lowermost Sarmatian) Schrotzburg locality in S Germany, based on the fossil macro- and micro-flora, using four different methods for the estimation of palaeoclimate parameters: the coexistence approach (CA), leaf margin analysis (LMA), the Climate-Leaf Analysis Multivariate Program (CLAMP), as well as a recently developed multivariate leaf physiognomic approach based on an European calibration dataset (ELPA). Considering results of all methods used, the following palaeoclimate estimates seem to be most likely: mean annual temperature ~15-16°C (MAT), coldest month mean temperature ~7°C (CMMT), warmest month mean temperature between 25 and 26°C, and mean annual precipiation ~1,300 mm, although CMMT values may have been colder as indicated by the disappearance of the crocodile Diplocynodon and the temperature thresholds derived from modern alligators. For most palaeoclimatic parameters, estimates derived by CLAMP significantly differ from those derived by most other methods. With respect to the consistency of the results obtained by CA, LMA and ELPA, it is suggested that for the Schrotzburg locality CLAMP is probably less reliable than most other methods. A possible explanation may be attributed to the correlation between leaf physiognomy and climate as represented by the CLAMP calibration data set which is largely based on extant floras from N America and E Asia and which may be not suitable for application to the European Neogene. All physiognomic methods used here were affected by taphonomic biasses. Especially the number of taxa had a great influence on the reliability of the palaeoclimate estimates. Both multivariate leaf physiognomic approaches are less influenced by such biasses than the univariate LMA. In combination with previously published results from the European and Asian Neogene, our data suggest that during the Neogene in Eurasia CLAMP may produce temperature estimates, which are systematically too cold as compared to other evidence. This pattern, however, has to be further investigated using additional palaeofloras.
Resumo:
We present a high-resolution (not, vert, similar 60-110 yr) multi-proxy record spanning Marine Isotope Stage 3 from IMAGES Core MD01-2378 (13°04.95'S and 121°47.27'E, 1783 m water depth), located in the Timor Sea, off NW Australia. Today, this area is influenced by the Intertropical Convergence Zone, which drives monsoonal winds during austral summer and by the main outflow of the Indonesian Throughflow, which represents a key component of the global thermohaline circulation system. Thus, this core is ideally situated to monitor the linkages between tropical and high latitude climate variability. Benthic d18O data (Planulina wuellerstorfi) clearly reflect Antarctic warm events (A1-A4) as recorded by the EPICA Byrd and Dronning Maud Land ice cores. This southern high latitude signal is transferred by deep and intermediate water masses flowing northward from the Southern Ocean into the Indian Ocean. Planktonic d18O shows closer affinity to northern high latitudes planktonic and ice core records, although only the longer-lasting Dansgaard-Oeschger warm events, 8, 12, 14, and 16-17 are clearly expressed in our record. This northern high latitude signal in the surface water is probably transmitted through atmospheric teleconnections and coupling of the Asian-Australian monsoon systems. Benthic foraminiferal census counts suggest a coupling of Antarctic cooling with carbon flux patterns in the Timor Sea. We relate increasing abundances of carbon-flux sensitive species at 38-45 ka to the northeastward migration of the West Australian Current frontal area. This water mass reorganization is also supported by concurrent decreases in Mg/Ca and planktonic d18O values (Globigerinoides ruber white).
Resumo:
Palynofloras of the Kocaçay and Cumaovasi basins in western Turkey that belong to a time-span from the late Early to late Middle Miocene (the late Burdigalian-Serravallian) are studied and compared with published palynofloras of Europe and Turkey. Palynological data and numerical climatic results obtained by the coexistence approach indicate palaeoclimate changed from warm subtropical to temperate during the late Burdigalian-Serravallian. Moreover, the palaeoclimates of the Kocacay and Cumaovasi basins are compared with continental palaeoclimatic records of coal-bearing sediments in western Turkey and current temperatures in the Izmir region. According to this comparison, palaeoclimatic results of these basins and other localities in western Turkey show a distinct difference as a result of orographic change. The palaeovegetation in the Kocaçay and Cumaovasi basins during the studied time-span was affected by palaeotopography and palaeoclimate. In these basins mixed mesophytic, coniferous forests, and swamp palaeovegetation generally predominated during the late Early-early Middle Miocene. The role of the herbaceous taxa increased at the end of the late Middle Miocene (the Serravallian) in the Kocaçay and Cumaovasi basins. It is obvious from the palynomorph data of these basins that grassland palaeovegetation started to expand in the late Middle Miocene. Unlike in Central Europe, where late Burdigalian and Langhian represent a period of outstanding warmth, the so-called Mid-Miocene Climatic Optimum, cold month mean temperatures reconstructed in this study point to an ongoing cooling trend, already from the late Burdigalian onwards, possibly related to increasing terrestrial conditions in the study area.
Resumo:
A substantial strengthening of the South American monsoon system (SAMS) during Heinrich Stadials (HS) points toward decreased cross-equatorial heat transport as the main driver of monsoonal hydroclimate variability at millennial time-scales. In order to better constrain the exact timing and internal structure of HS1 over tropical South America we assessed two precisely dated speleothem records from central-eastern and northeastern Brazil in combination with two marine records of terrestrial organic and inorganic matter input into the western equatorial Atlantic. During HS1 we recognize at least two events of widespread intensification of the SAMS across the entire region influenced by the South Atlantic Convergence Zone (SACZ) at 16.11-14.69 kyr BP and 18.1-16.66 kyr BP (labeled as HS1a and HS1c, respectively), separated by a dry excursion from 16.66-16.11 kyr BP (HS1b). In view of the spatial structure of precipitation anomalies, the widespread increase of monsoon precipitation over the SACZ domain was termed 'Mega-SACZ'.
Resumo:
The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.
Paleoclimate reconstruction from Miocene macroflora in Kazakhstan compiled from various publications
Resumo:
25 datasets (13 fossil leaf and pollen assemblages, 12 quantitative palaeoclimatic datasets) are provided in order to analyse Early Miocene palaeoclimate in Kazakhstan. The rich fossil record in Kazakhstan documents that during the Oligocene and Early Miocene this area in Central Eurasia was densely forested with warm-temperate deciduous trees and shrubs of the so-called "Turgayan flora". 29 fossil floras from 13 localities have been selected for a quantitative analysis of the Aquitanian (early Early Miocene) climate situation in Kazakhstan. The assessed mean annual temperatures generally place around 15 °C, while values of mean annual precipitation are of about 1000 mm. In combination with several other climate parameters estimated (temperatures of warmest and coldest months, precipitation rates of wettest, driest and warmest months), these data reflect uniform climatic conditions over several thousands of square kilometres. Data of temperature parameters show slight spatial differentiations, with generally cooler mean annual temperatures and higher seasonality (i.e. warmer summers and colder winters) in the north-eastern part of the study area compared with the south-western area around Lake Aral. As compared with palaeoclimate estimates for the European and East Asian Aquitanian, the central part of the Eurasian continent reveals evident signals of higher seasonality and slightly increased continentality.
Resumo:
Oxygen-isotope records from Greenland ice cores indicate numerous rapid climate fluctuations during the last glacial period. North Atlantic marine sediment cores show comparable variability in sea surface temperature and the deposition of icerafted debris. In contrast, very few continental records of this time period provide the temporal resolution and environmental sensitivity necessary to reveal the extent and effects of these environmental fluctuations on the continents. Here we present high-resolution geochemical, physical and pollen data from lake sediments in Italy and from a Mediterranean sediment core, linked by a common tephrochronology. Our lacustrine sequence extends to the past 102,000 years. Many of its features correlate well with the Greenland ice-core records, demonstrating that the closely coupled ocean-atmosphere system of the Northern Hemisphere during the last glacial extended its influence at least as far as the central Mediterranean region. Numerous vegetation changes were rapid, frequently occurring in less than 200 years, showing that the terrestrial biosphere participated fully in lastglacial climate variability. Earlier than 65,000 years ago, our record shows more climate fluctuations than are apparent in the Greenland ice cores. Together, the multi-proxy data from the continental and marine records reveal differences in the seasonal character of climate during successive interstadials, and provide a step towards determining the underlying mechanisms of the centennial-millennial-scale variability.
Resumo:
In northeastern Siberia, Russia, a 1.2 m sediment core was retrieved and radiocarbon dated from a small and shallow lake located at the western side of the lower Lena River (N 69°24', E 123°50', 81 m a.s.l.). The objective of this paper is to reconstruct the palaeoenvironmental variability and to infer major palaeoclimate trends that have occurred since ~ 13.3 cal. kyrs BP. We analysed the diatom assemblages, sedimentology (grain size, total organic carbon (TOC), total nitrogen (TN)), and the elemental and mineralogical composition using X-ray fluorescence (XRF) and X-ray diffractometry (XRD) of the sediment core. Our results show parallel changes in the diatom species composition and sediment characteristics. Enhanced minerogenic sediment input and the occurrence of pyrite is indicative of a cold period between ~ 12.7-11.6 cal. kyrs BP. The diatom data enable a qualitative inference about the local ecological conditions to be made, and reveal an oligotrophic lake system with alkaline and cold conditions during the earliest Holocene. Moderately warmer climates are inferred for the period from ~ 9.1 to 5.7 cal. kyrs BP. The major shift in the diatom assemblage, from dominance of small benthic fragilarioid taxa to a more complex diatom flora with an influx of several achnanthoid and naviculoid diatom species, occurred after a transitional period of about 1400 years (7.1 to 5.7 cal. kyrs BP) at ~ 5.7 cal. kyrs BP, indicating a circumneutral and warmer hydrological regime during the Holocene thermal maximum (HTM). Diatom valve concentrations declined starting ~ 2.8 cal. kyrs BP, but have been rising again since less than or equalt to 600 cal. years BP. This has occurred in parallel to the increased presence of acidophilous diatom taxa (e.g. Eunotia spp.) and decreased presence of small benthic fragilarioid species in the most recent sediments, which is interpreted as the result of neoglacial cooling and subsequent recent climate warming. Our findings are compared to other lake-inferred climate reconstructions along the Lena River. We conclude that the timing and spatial variability of the HTM in the lower Lena River area reveal a temporal delay from north to south.
Resumo:
Compilation of figure recipes for all figures of Chapter 5 of IPCC Working Group I, Fifth Assessment Report. In addition to figure captions, figure recipes are supposed to serve as detailed figure creation info. If not publicly available elsewhere, processed data underlying the respective figures are also provided here.