23 resultados para far-field


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age (T(C)DM). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, epsilon-Hf 9 to -28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, epsilon-Hf 11 to -28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ?Hf in its 1200-900 Ma rocks bounded on either side by positive epsilon-Hf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ~500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic the 1000-900 Ma collisional events in the Eastern Ghats-Rayner Province at the end of the 1300-1000 Ma assembly of Rodinia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ephemeral polar glaciations during the middle-to-late Eocene (48-34 Ma) have been proposed based on far-field ice volume proxy records and near-field glacigenic sediments, although the scale, timing, and duration of these events are poorly constrained. Here we confirm the existence of a transient cool event within a new high-resolution benthic foraminiferal d18O record at Ocean Drilling Program (ODP) Site 738 (Kerguelen Plateau; Southern Ocean). This event, named the Priabonian oxygen isotope maximum (PrOM) Event, lasted ~140 kyr and is tentatively placed within magnetochron C17n.1n (~37.3 Ma) based on the correlation to ODP Site 689 (Maud Rise, Southern Ocean). A contemporaneous change in the provenance of sediments delivered to the Kerguelen Plateau occurs at the study site, determined from the <63 µm fraction of decarbonated and reductively leached sediment samples. Changes in the mixture of bottom waters, based on fossil fish tooth epsilon-Nd, were less pronounced and slower relative to the benthic d18O and terrigenous epsilon-Nd changes. Terrigenous sediment epsilon-Nd values rapidly shifted to less radiogenic signatures at the onset of the PrOM Event, indicating an abrupt change in provenance favoring ancient sources such as the Paleoproterozoic East Antarctic craton. Bottom water epsilon-Nd reached a minimum value during the PrOM Event, although the shift begins much earlier than the terrigenous epsilon-Nd excursion. The origin of the abrupt change in terrigenous sediment provenance is compatible with a change in Antarctic terrigenous sediment flux and/or source as opposed to a reorganization of ocean currents. A change in terrigenous flux and/or source of Antarctic sediments during the oxygen isotope maximum suggests a combination of cooling and ice growth in East Antarctica during the early late Eocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fossil, facies, and isotope analyses of an early high-paleolatitude (55°S) section suggests a highly unstable East Antarctic Ice Sheet from 32 to 27 Myr. The waxing and waning of this ice sheet from 140% to 40% of its present volume caused sea level changes of ±25 m (ranging from -30 to +50 m) related to periodic glacial (100,000 to 200,000 years) and shorter interglacial events. The near-field Gippsland sea level (GSL) curve shares many similarities to the far-field New Jersey sea level (NJSL) estimates. However, there are possible resolution errors due to biochronology, taphonomy, and paleodepth estimates and the relative lack of lowstand deposits (in NJSL) that prevent detailed correlations with GSL. Nevertheless, the lateral variations in sea level between the GSL section and NJSL record that suggest ocean siphoning and antisiphoning may have propagated synchronous yet variable sea levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present sea surface, upper thermocline, and benthic d18O data, as well as temperature and paleoproductivity proxy data, from the International Marine Global Change Study Program (IMAGES) Core MD06-3067 (6°31'N, 126°30'E, 1575 m water depth), located in the western equatorial Pacific Ocean within the flow path of the Mindanao Current. Our records reveal considerable glacial-interglacial and suborbital variability in the Mindanao Dome upwelling over the last 160 kyr. Dome activity generally intensified during glacial intervals resulting in cooler thermocline waters, whereas it substantially declined during interglacials, in particular in the early Holocene and early marine oxygen isotope stage (MIS) 5e, when upwelling waters did not reach the thermocline. During MIS 3 and MIS 2, enhanced surface productivity together with remarkably low SST and low upper ocean thermal contrast provide evidence for episodic glacial upwelling to the surface, whereas transient surface warming marks periodic collapses of the Mindanao Dome upwelling during Heinrich events. We attribute the high variability during MIS 3 and MIS 2 to changes in the El Niño Southern Oscillation state that affected boreal winter monsoonal winds and upper ocean circulation. Glacial upwelling intensified when a strong cyclonic gyre became established, whereas El Niño-like conditions during Heinrich events tended to suppress the cyclonic circulation, reducing Ekman transport. Thus, our findings demonstrate that variations in the Mindanao Dome upwelling are closely linked to the position and intensity of the tropical convection and also reflect far-field influences from the high latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main motivation for Integrated Ocean Drilling Program Expedition 310 to the Tahitian Archipelago was the assumption that the last deglacial sea-level rise is precisely recorded in the coral reefs of this far-field site. The Tahitian deglacial succession typically consists of coral framework subsequently encrusted by coralline algae and microbialites. The high abundance of microbialites is uncommon for shallow-water coral reefs, and the environmental conditions favouring their development are still poorly understood. Microbioerosion patterns in the three principal framework components (corals, coralline algae, microbialites) are studied with respect to relative light availability during coral growth and subsequent encrustation, in order to constrain the palaeobathymetry and the relative timing of the encrustation. Unexpectedly for a tropical, light-flooded setting, ichnotaxa typical for the deep-euphotic to dysphotic zone dominate. The key ichnotaxa for the shallow euphotic zone are scarce in the analysed sample set, and are restricted tothe baseof thedeglacial succession, thus reflecting thedeglacial sea-level rise. At the base of the deglacial reef succession, the ichnocoenoses present in the corals indicate shallower bathymetries than those in the encrusting microbialites. This is in agreement with radiocarbon data that indicate a time gap of more than 600 years between coral death and microbialite formation. At the top of the deglacial reef succession, in contrast, the microbioerosion patterns in the three framework components indicate a uniform palaeobathymetry, and radiocarbon ages imply that encrustation took place shortly after coral demise. An enigma arises from the fact that the ichnocoenoses imply photic conditions that appear very deep for zooxanthellate coral growth. During the deglacial sea-level rise increased nutrients and fluvial influx may have led to (seasonal?) eutrophication, condensing the photic zonation. This would have exerted stress on the coral ecosystem and played a significant role in initiating microbialite development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present sea surface, upper thermocline, and benthic d18O data, as well as temperature and paleoproductivity proxy data, from the International Marine Global Change Study Program (IMAGES) Core MD06-3067 (6°31'N, 126°30'E, 1575 m water depth), located in the western equatorial Pacific Ocean within the flow path of the Mindanao Current. Our records reveal considerable glacial-interglacial and suborbital variability in the Mindanao Dome upwelling over the last 160 kyr. Dome activity generally intensified during glacial intervals resulting in cooler thermocline waters, whereas it substantially declined during interglacials, in particular in the early Holocene and early marine oxygen isotope stage (MIS) 5e, when upwelling waters did not reach the thermocline. During MIS 3 and MIS 2, enhanced surface productivity together with remarkably low SST and low upper ocean thermal contrast provide evidence for episodic glacial upwelling to the surface, whereas transient surface warming marks periodic collapses of the Mindanao Dome upwelling during Heinrich events. We attribute the high variability during MIS 3 and MIS 2 to changes in the El Niño Southern Oscillation state that affected boreal winter monsoonal winds and upper ocean circulation. Glacial upwelling intensified when a strong cyclonic gyre became established, whereas El Niño-like conditions during Heinrich events tended to suppress the cyclonic circulation, reducing Ekman transport. Thus, our findings demonstrate that variations in the Mindanao Dome upwelling are closely linked to the position and intensity of the tropical convection and also reflect far-field influences from the high latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El'gygytgyn (NE Russia) provides a continuous high-resolution record from the Arctic spaning the past 2.8 Ma. The core reveals numerous "super interglacials" during the Quaternary, with maximum summer temperatures and annual precipitation during marine benthic isotope stages (MIS) 11c and 31 ~4-5 °C and ~300 mm higher than those of MIS 1 and 5e. Climate simulations show these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.