19 resultados para VIRTUAL ENVIRONMENTS
Resumo:
The grasping of virtual objects has been an active research field for several years. Solutions providing realistic grasping rely on special hardware or require time-consuming parameterizations. Therefore, we introduce a flexible grasping algorithm enabling grasping without computational complex physics. Objects can be grasped and manipulated with multiple fingers. In addition, multiple objects can be manipulated simultaneously with our approach. Through the usage of contact sensors the technique is easily configurable and versatile enough to be used in different scenarios.
Resumo:
We present redirection techniques that support exploration of large-scale virtual environments (VEs) by means of real walking. We quantify to what degree users can unknowingly be redirected in order to guide them through VEs in which virtual paths differ from the physical paths. We further introduce the concept of dynamic passive haptics by which any number of virtual objects can be mapped to real physical proxy props having similar haptic properties (i. e., size, shape, and surface structure), such that the user can sense these virtual objects by touching their real world counterparts. Dynamic passive haptics provides the user with the illusion of interacting with a desired virtual object by redirecting her to the corresponding proxy prop. We describe the concepts of generic redirected walking and dynamic passive haptics and present experiments in which we have evaluated these concepts. Furthermore, we discuss implications that have been derived from a user study, and we present approaches that derive physical paths which may vary from the virtual counterparts.
Resumo:
This article describes a series of experiments which were carried out to measure the sense of presence in auditory virtual environments. Within the study a comparison of self-created signals to signals created by the surrounding environment is drawn. Furthermore, it is investigated if the room characteristics of the simulated environment have consequences on the perception of presence during vocalization or when listening to speech. Finally the experiments give information about the influence of background signals on the sense of presence. In the experiments subjects rated the degree of perceived presence in an auditory virtual environment on a perceptual scale. It is described which parameters have the most influence on the perception of presence and which ones are of minor influence. The results show that on the one hand an external speaker has more influence on the sense of presence than an adequate presentation of one’s own voice. On the other hand both room reflections and adequately presented background signals significantly increase the perceived presence in the virtual environment.
Resumo:
This article begins with some recent considerations about real-time music, inspired by the latest contribution of French composer Philippe Manoury. Then, through the case study of the scenic performance La Traversée de la nuit, we analyse some perspectives for designing an Informed Virtual Environment dedicated to live show artistic domain.
Resumo:
The characteristics of moving sound sources have strong implications on the listener's distance perception and the estimation of velocity. Modifications of the typical sound emissions as they are currently occurring due to the tendency towards electromobility have an impact on the pedestrian's safety in road traffic. Thus, investigations of the relevant cues for velocity and distance perception of moving sound sources are not only of interest for the psychoacoustic community, but also for several applications, like e.g. virtual reality, noise pollution and safety aspects of road traffic. This article describes a series of psychoacoustic experiments in this field. Dichotic and diotic stimuli of a set of real-life recordings taken from a passing passenger car and a motorcycle were presented to test subjects who in turn were asked to determine the velocity of the object and its minimal distance from the listener. The results of these psychoacoustic experiments show that the estimated velocity is strongly linked to the object's distance. Furthermore, it could be shown that binaural cues contribute significantly to the perception of velocity. In a further experiment, it was shown that - independently of the type of the vehicle - the main parameter for distance determination is the maximum sound pressure level at the listener's position. The article suggests a system architecture for the adequate consideration of moving sound sources in virtual auditory environments. Virtual environments can thus be used to investigate the influence of new vehicle powertrain concepts and the related sound emissions of these vehicles on the pedestrians' ability to estimate the distance and velocity of moving objects.
Resumo:
In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location and orientation of the user, while the augmented reality interface uses computer vision techniques to capture patterns from the real environment and overlay additional way-finding information, aligned with real imagery, in real-time. The knowledge obtained from the evaluation of the virtual reality navigational experience has been used to inform the design of the augmented reality interface. Initial results of the user testing of the experimental augmented reality system for navigation are presented.
Resumo:
In this paper we present XSAMPL3D, a novel language for the high-level representation of actions performed on objects by (virtual) humans. XSAMPL3D was designed to serve as action representation language in an imitation-based approach to character animation: First, a human demonstrates a sequence of object manipulations in an immersive Virtual Reality (VR) environment. From this demonstration, an XSAMPL3D description is automatically derived that represents the actions in terms of high-level action types and involved objects. The XSAMPL3D action description can then be used for the synthesis of animations where virtual humans of different body sizes and proportions reproduce the demonstrated action. Actions are encoded in a compact and human-readable XML-format. Thus, XSAMPL3D describtions are also amenable to manual authoring, e.g. for rapid prototyping of animations when no immersive VR environment is at the animator's disposal. However, when XSAMPL3D descriptions are derived from VR interactions, they can accomodate many details of the demonstrated action, such as motion trajectiories,hand shapes and other hand-object relations during grasping. Such detail would be hard to specify with manual motion authoring techniques only. Through the inclusion of language features that allow the representation of all relevant aspects of demonstrated object manipulations, XSAMPL3D is a suitable action representation language for the imitation-based approach to character animation.
Resumo:
Virtual environments (VE) are gaining in popularity and are increasingly used for teamwork training purposes, e.g., for medical teams. One shortcoming of modern VEs is that nonverbal communication channels, essential for teamwork, are not supported well. We address this issue by using an inexpensive webcam to track the user's head. This tracking information is used to control the head movement of the user's avatar, thereby conveying head gestures and adding a nonverbal communication channel. We conducted a user study investigating the influence of head tracking based avatar control on the perceived realism of the VE and on the performance of a surgical teamwork training scenario. Our results show that head tracking positively influences the perceived realism of the VE and the communication, but has no major influence on the training outcome.
Resumo:
While navigation systems for cars are in widespread use, only recently, indoor navigation systems based on smartphone apps became technically feasible. Hence tools in order to plan and evaluate particular designs of information provision are needed. Since tests in real infrastructures are costly and environmental conditions cannot be held constant, one must resort to virtual infrastructures. This paper presents the development of an environment for the support of the design of indoor navigation systems whose center piece consists in a hands-free navigation method using the Microsoft Kinect in the four-sided Definitely Affordable Virtual Environment (DAVE). Navigation controls using the user's gestures and postures as the input to the controls are designed and implemented. The installation of expensive and bulky hardware like treadmills is avoided while still giving the user a good impression of the distance she has traveled in virtual space. An advantage in comparison to approaches using a head mounted display is that the DAVE allows the users to interact with their smartphone. Thus the effects of different indoor navigation systems can be evaluated already in the planning phase using the resulting system
Resumo:
Human behavior is a major factor modulating the consequences of road tunnel accidents. We investigated the effect of information and instruction on drivers' behavior as well as the usability of virtual environments to simulate such emergency situations. Tunnel safety knowledge of the general population was assessed using an online questionnaire, and tunnel safety behavior was investigated in a virtual reality experiment. Forty-four participants completed three drives through a virtual road tunnel and were confronted with a traffic jam, no event, and an accident blocking the road. Participants were randomly assigned to a control group (no intervention), an informed group who read a brochure containing safety information prior to the tunnel drives, or an informed and instructed group who read the same brochure and received additional instructions during the emergency situation. Informed participants showed better and quicker safety behavior than the control group. Self-reports of anxiety were assessed three times during each drive. Anxiety was elevated during and after the emergency situation. The findings demonstrate problematic safety behavior in the control group and that knowledge of safety information fosters adequate behavior in tunnel emergencies. Enhanced anxiety ratings during the emergency situation indicate external validity of the virtual environment.
Resumo:
The past few years, multimodal interaction has been gaining importance in virtual environments. Although multimodality renders interacting with an environment more natural and intuitive, the development cycle of such an application is often long and expensive. In our overall field of research, we investigate how modelbased design can facilitate the development process by designing environments through the use of highlevel diagrams. In this scope, we present ‘NiMMiT’, a graphical notation for expressing and evaluating multimodal user interaction; we elaborate on the NiMMiT primitives and demonstrate its use by means of a comprehensive example.
Resumo:
For enhanced immersion into a virtual scene more than just the visual sense should be addressed by a Virtual Reality system. Additional auditory stimulation appears to have much potential, as it realizes a multisensory system. This is especially useful when the user does not have to wear any additional hardware, e.g., headphones. Creating a virtual sound scene with spatially distributed sources requires a technique for adding spatial cues to audio signals and an appropriate reproduction. In this paper we present a real-time audio rendering system that combines dynamic crosstalk cancellation and multi-track binaural synthesis for virtual acoustical imaging. This provides the possibility of simulating spatially distributed sources and, in addition to that, near-to-head sources for a freely moving listener in room-mounted virtual environments without using any headphones. A special focus will be put on near-to-head acoustics, and requirements in respect of the head-related transfer function databases are discussed.
Resumo:
Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.
Resumo:
Immersive virtual environments (IVEs) have the potential to afford natural interaction in the three-dimensional (3D) space around a user. However, interaction performance in 3D mid-air is often reduced and depends on a variety of ergonomics factors, the user's endurance, muscular strength, as well as fitness. In particular, in contrast to traditional desktop-based setups, users often cannot rest their arms in a comfortable pose during the interaction. In this article we analyze the impact of comfort on 3D selection tasks in an immersive desktop setup. First, in a pre-study we identified how comfortable or uncomfortable specific interaction positions and poses are for users who are standing upright. Then, we investigated differences in 3D selection task performance when users interact with their hands in a comfortable or uncomfortable body pose, while sitting on a chair in front of a table while the VE was displayed on a headmounted display (HMD). We conducted a Fitts' Law experiment to evaluate selection performance in different poses. The results suggest that users achieve a significantly higher performance in a comfortable pose when they rest their elbow on the table.
Resumo:
Tracking user’s visual attention is a fundamental aspect in novel human-computer interaction paradigms found in Virtual Reality. For example, multimodal interfaces or dialogue-based communications with virtual and real agents greatly benefit from the analysis of the user’s visual attention as a vital source for deictic references or turn-taking signals. Current approaches to determine visual attention rely primarily on monocular eye trackers. Hence they are restricted to the interpretation of two-dimensional fixations relative to a defined area of projection. The study presented in this article compares precision, accuracy and application performance of two binocular eye tracking devices. Two algorithms are compared which derive depth information as required for visual attention-based 3D interfaces. This information is further applied to an improved VR selection task in which a binocular eye tracker and an adaptive neural network algorithm is used during the disambiguation of partly occluded objects.