6 resultados para Optical Transmission
em Digital Commons - Michigan Tech
Resumo:
Metamaterials are artificial materials that exhibit properties, such as negative index of refraction, that are not possible through natural materials. Due to many potential applications of negative index metamaterials, significant progress in the field has been observed in the last decade. However, achieving negative index at visible frequencies is a challenging task. Generally, fishnet metamaterials are considered as a possible route to achieve negative index in the visible spectrum. However, so far no metamaterial has been demonstrated to exhibit simultaneously negative permittivity and permeability (double-negative) beyond the red region of the visible spectrum. This study is mainly focused on achieving higher operating frequency for low-loss, double-negative metamaterials. Two double-negative metamaterials have been proposed to operate at highest reported frequencies. The first proposed metamaterial is based on the interaction of surface plasmon polaritons of a thin metal film with localized surface plasmons of a metallic array placed close to the thin film. It is demonstrated that the metamaterial can easily be scaled to operate at any frequency in the visible spectrum as well as possibly to the ultraviolet spectrum. Furthermore, the underlying physical phenomena and possible future extensions of the metamaterial are also investigated. The second proposed metamaterial is a modification to the so-called fishnet metamaterial. It has been demonstrated that this ‘modified fishnet’ exhibits two double-negative bands in the visible spectrum with highest operating frequency in the green region with considerably high figure of merit. In contrast to most of the fishnet metamaterials proposed in the past, behavior of this modified fishnet is independent of polarization of the incident field. In addition to the two negative index metamaterials proposed in this study, the use of metamaterial as a spacer, named as metaspacer, is also investigated. In contrast to naturally available dielectric spacers used in microfabrication, metaspacers can be realized with any (positive or negative) permittivity and permeability. As an example, the use of a negative index metaspacer in place of the dielectric layer in a fishnet metamaterial is investigated. It is shown that fishnet based on negative index metaspacer gives many improved optical properties over the conventional fishnet such as wider negative index band, higher figure of merit, higher optical transmission and stronger magnetic response. In addition to the improved properties, following interesting features were observed in the metaspacer based fishnet metamaterial. At the resonance frequency, the shape of the permeability curve was ‘inverted’ as compared to that for conventional fishnet metamaterial. Furthermore, dependence of the resonance frequency on the fishnet geometry was also reversed. Moreover, simultaneously negative group and phase velocities were observed in the low-loss region of the metaspacer based fishnet metamaterial. Due to interesting features observed using metaspacer, this study will open a new horizon for the metamaterial research.
Resumo:
This work presents an innovative integration of sensing and nano-scaled fluidic actuation in the combination of pH sensitive optical dye immobilization with the electro-osmotic phenomena in polar solvents like water for flow-through pH measurements. These flow-through measurements are performed in a flow-through sensing device (FTSD) configuration that is designed and fabricated at MTU. A relatively novel and interesting material, through-wafer mesoporous silica substrates with pore diameters of 20 -200 nm and pore depths of 500 µm are fabricated and implemented for electro-osmotic pumping and flow-through fluorescence sensing for the first time. Performance characteristics of macroporous silicon (> 500 µm) implemented for electro-osmotic pumping include, a very large flow effciency of 19.8 µLmin-1V-1 cm-2 and maximum pressure effciency of 86.6 Pa/V in comparison to mesoporous silica membranes with 2.8 µLmin-1V-1cm-2 flow effciency and a 92 Pa/V pressure effciency. The electrical current (I) of the EOP system for 60 V applied voltage utilizing macroporous silicon membranes is 1.02 x 10-6A with a power consumption of 61.74 x 10-6 watts. Optical measurements on mesoporous silica are performed spectroscopically from 300 nm to 1000 nm using ellipsometry, which includes, angularly resolved transmission and angularly resolved reflection measurements that extend into the infrared regime. Refractive index (n) values for oxidized and un-oxidized mesoporous silicon sample at 1000 nm are found to be 1.36 and 1.66. Fluorescence results and characterization confirm the successful pH measurement from ratiometric techniques. The sensitivity measured for fluorescein in buffer solution is 0.51 a.u./pH compared to sensitivity of ~ 0.2 a.u./pH in the case of fluorescein in porous silica template. Porous silica membranes are efficient templates for immobilization of optical dyes and represent a promising method to increase sensitivity for small variations in chemical properties. The FTSD represents a device topology suitable for application to long term monitoring of lakes and reservoirs. Unique and important contributions from this work include fabrication of a through-wafer mesoporous silica membrane that has been thoroughly characterized optically using ellipsometry. Mesoporous silica membranes are tested as a porous media in an electro-osmotic pump for generating high pressure capacities due to the nanometer pore sizes of the porous media. Further, dye immobilized mesoporous silica membranes along with macroporous silicon substrates are implemented for continuous pH measurements using fluorescence changes in a flow-through sensing device configuration. This novel integration and demonstration is completely based on silicon and implemented for the first time and can lead to miniaturized flow-through sensing systems based on MEMS technologies.
Resumo:
Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.
Resumo:
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Resumo:
Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 $unit{mu m}$ multimode and 4 - 9 $unit{mu m}$ single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 µm or 150 µm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is designed to couple light from a silicon waveguide to a polymer single mode waveguide. A focusing grating coupler is compared to a perpendicular grating coupler that is focused by a micro-molded lens. The focusing grating coupler had an optical loss of over -14 dB, while the grating coupler with a lens had an optical loss of -6.26 dB.
Resumo:
Atmospheric scattering plays a crucial rule in degrading the performance of electro optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media as composed of two main components: a direct (unscattered), and a scattered component. In this work we developed a detailed model of the effects of absorption and scattering by haze and fog atmospheric aerosols on the optical radiation propagating from the object plane to an imaging system, based on the classical theory of EM scattering. This detailed model is then used to compute the average point spread function (PSF) of an imaging system which properly accounts for the effects of the diffraction, scattering, and the appropriate optical power level of both the direct and the scattered radiation arriving at the pupil of the imaging system. Also, the calculated PSF, properly weighted for the energy contributions of the direct and scattered components is used, in combination with a radiometric model, to estimate the average number of the direct and scattered photons detected at the sensor plane, which are then used to calculate the image spectrum signal to- noise ratio (SNR) in the visible near infra-red (NIR) and mid infra-red (MIR) spectral wavelength bands. Reconstruction of images degraded by atmospheric scattering and measurement noise is then performed, up to the limit imposed by the noise effective cutoff spatial frequency of the image spectrum SNR. Key results of this research are as follows: A mathematical model based on Mie scattering theory for how scattering from aerosols affects the overall point spread function (PSF) of an imaging system was developed, coded in MATLAB, and demonstrated. This model along with radiometric theory was used to predict the limiting resolution of an imaging system as a function of the optics, scattering environment, and measurement noise. Finally, image reconstruction algorithms were developed and demonstrated which mitigate the effects of scattering-induced blurring to within the limits imposed by noise.