3 resultados para Optical Transmission
em CaltechTHESIS
Resumo:
The growth of bulky and platelet shaped α-monoclinic crystals is discussed. A simple method is devised for identifying and orienting them.
The density, previously in disagreement with the value calculated from x-ray studies, is carefully redetermined, and found to be in good agreement with the latter.
The relative dielectric constant is determined, an effort being made to eliminate errors inherent in previous measurements, which have not been in agreement. A two parameter model is derived which explains the anisotropy in the relative dielectric constant of orthorhombic sulfur, which is also composed of 8-atom puckered ring molecules. The model works less well for α-monoclinic selenium. The relative dielectric constant anisotropy is quite noticeable, being 6.06 along the crystal b axis, and 8.52-8.93 normal to the axis.
Thin crystal platelets of α-monoclinic selenium (less than 1µ thick) are used to extend optical transmission measurements up to 4.5eV. Previously the measurements extended up to 2.1 eV, limited by the thickness of the available crystals. The absorption edge is at 2.20 eV, with changes in slope of the absorption coefficient occurring at 2.85 eV and 3.8 eV. Measurement of transmission through solutions of selenium in CS_2 and trichlorethylene yield an absorption edge of 2.75 eV. There is evidence the selenium exists in solution partly as Se_8 rings, the building block of monoclinic selenium. Transmission is measured at low temperatures (80°K and 10°K) using the platelets. The absorption edge is at 2.38 eV and 2.39 eV, respectively, for the two temperatures. Measurements at low temperatures with polarized and unpolarized light reveal interesting absorption anisotropy near 2.65 eV.
Resumo:
Semiconductor technology scaling has enabled drastic growth in the computational capacity of integrated circuits (ICs). This constant growth drives an increasing demand for high bandwidth communication between ICs. Electrical channel bandwidth has not been able to keep up with this demand, making I/O link design more challenging. Interconnects which employ optical channels have negligible frequency dependent loss and provide a potential solution to this I/O bandwidth problem. Apart from the type of channel, efficient high-speed communication also relies on generation and distribution of multi-phase, high-speed, and high-quality clock signals. In the multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. However, its small locking range has been a major contributor in preventing its ubiquitous acceptance.
In the first part of this dissertation we describe a wideband injection locking scheme in an LC oscillator. Phase locked loop (PLL) and injection locking elements are combined symbiotically to achieve wide locking range while retaining the simplicity of the latter. This method does not require a phase frequency detector or a loop filter to achieve phase lock. A mathematical analysis of the system is presented and the expression for new locking range is derived. A locking range of 13.4 GHz–17.2 GHz (25%) and an average jitter tracking bandwidth of up to 400 MHz are measured in a high-Q LC oscillator. This architecture is used to generate quadrature phases from a single clock without any frequency division. It also provides high frequency jitter filtering while retaining the low frequency correlated jitter essential for forwarded clock receivers.
To improve the locking range of an injection locked ring oscillator; QLL (Quadrature locked loop) is introduced. The inherent dynamics of injection locked quadrature ring oscillator are used to improve its locking range from 5% (7-7.4GHz) to 90% (4-11GHz). The QLL is used to generate accurate clock phases for a four channel optical receiver using a forwarded clock at quarter-rate. The QLL drives an injection locked oscillator (ILO) at each channel without any repeaters for local quadrature clock generation. Each local ILO has deskew capability for phase alignment. The optical-receiver uses the inherent frequency to voltage conversion provided by the QLL to dynamically body bias its devices. A wide locking range of the QLL helps to achieve a reliable data-rate of 16-32Gb/s and adaptive body biasing aids in maintaining an ultra-low power consumption of 153pJ/bit.
From the optical receiver we move on to discussing a non-linear equalization technique for a vertical-cavity surface-emitting laser (VCSEL) based optical transmitter, to enable low-power, high-speed optical transmission. A non-linear time domain optical model of the VCSEL is built and evaluated for accuracy. The modelling shows that, while conventional FIR-based pre-emphasis works well for LTI electrical channels, it is not optimum for the non-linear optical frequency response of the VCSEL. Based on the simulations of the model an optimum equalization methodology is derived. The equalization technique is used to achieve a data-rate of 20Gb/s with power efficiency of 0.77pJ/bit.
Resumo:
An experimental investigation of the optical properties of β–gallium oxide has been carried out, covering the wavelength range 220-2500 nm.
The refractive index and birefringence have been determined to about ± 1% accuracy over the range 270-2500 nm, by the use of a technique based on the occurrence of fringes in the transmission of a thin sample due to multiple internal reflections in the sample (ie., the "channelled spectrum" of the sample.)
The optical absorption coefficient has been determined over the range 220 - 300 nm, which range spans the fundamental absorption edge of β – Ga2O3. Two techniques were used in the absorption coefficient determination: measurement of transmission of a thin sample, and measurement of photocurrent from a Schottky barrier formed on the surface of a sample. Absorption coefficient was measured over a range from 10 to greater than 105, to an accuracy of better than ± 20%. The absorption edge was found to be strongly polarization-dependent.
Detailed analyses are presented of all three experimental techniques used. Experimentally determined values of the optical constants are presented in graphical form.