26 resultados para Numerical Analysis and Computation

em Collection Of Biostatistics Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. We detail some of the design decisions, software paradigms and operational strategies that have allowed a small number of researchers to provide a wide variety of innovative, extensible, software solutions in a relatively short time. The use of an object oriented programming paradigm, the adoption and development of a software package system, designing by contract, distributed development and collaboration with other projects are elements of this project's success. Individually, each of these concepts are useful and important but when combined they have provided a strong basis for rapid development and deployment of innovative and flexible research software for scientific computation. A primary objective of this initiative is achievement of total remote reproducibility of novel algorithmic research results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For various reasons, it is important, if not essential, to integrate the computations and code used in data analyses, methodological descriptions, simulations, etc. with the documents that describe and rely on them. This integration allows readers to both verify and adapt the statements in the documents. Authors can easily reproduce them in the future, and they can present the document's contents in a different medium, e.g. with interactive controls. This paper describes a software framework for authoring and distributing these integrated, dynamic documents that contain text, code, data, and any auxiliary content needed to recreate the computations. The documents are dynamic in that the contents, including figures, tables, etc., can be recalculated each time a view of the document is generated. Our model treats a dynamic document as a master or ``source'' document from which one can generate different views in the form of traditional, derived documents for different audiences. We introduce the concept of a compendium as both a container for the different elements that make up the document and its computations (i.e. text, code, data, ...), and as a means for distributing, managing and updating the collection. The step from disseminating analyses via a compendium to reproducible research is a small one. By reproducible research, we mean research papers with accompanying software tools that allow the reader to directly reproduce the results and employ the methods that are presented in the research paper. Some of the issues involved in paradigms for the production, distribution and use of such reproducible research are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To examine effects of primary care physicians (PCPs) and patients on the association between charges for primary care and specialty care in a point-of-service (POS) health plan. Data Source. Claims from 1996 for 3,308 adult male POS plan members, each of whom was assigned to one of the 50 family practitioner-PCPs with the largest POS plan member-loads. Study Design. A hierarchical multivariate two-part model was fitted using a Gibbs sampler to estimate PCPs' effects on patients' annual charges for two types of services, primary care and specialty care, the associations among PCPs' effects, and within-patient associations between charges for the two services. Adjusted Clinical Groups (ACGs) were used to adjust for case-mix. Principal Findings. PCPs with higher case-mix adjusted rates of specialist use were less likely to see their patients at least once during the year (estimated correlation: –.40; 95% CI: –.71, –.008) and provided fewer services to patients that they saw (estimated correlation: –.53; 95% CI: –.77, –.21). Ten of 11 PCPs whose case-mix adjusted effects on primary care charges were significantly less than or greater than zero (p < .05) had estimated, case-mix adjusted effects on specialty care charges that were of opposite sign (but not significantly different than zero). After adjustment for ACG and PCP effects, the within-patient, estimated odds ratio for any use of primary care given any use of specialty care was .57 (95% CI: .45, .73). Conclusions. PCPs and patients contributed independently to a trade-off between utilization of primary care and specialty care. The trade-off appeared to partially offset significant differences in the amount of care provided by PCPs. These findings were possible because we employed a hierarchical multivariate model rather than separate univariate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the cacher and CodeDepends packages for R, which provide tools for (1) caching and analyzing the code for statistical analyses and (2) distributing these analyses to others in an efficient manner over the web. The cacher package takes objects created by evaluating R expressions and stores them in key-value databases. These databases of cached objects can subsequently be assembled into “cache packages” for distribution over the web. The cacher package also provides tools to help readers examine the data and code in a statistical analysis and reproduce, modify, or improve upon the results. In addition, readers can easily conduct alternate analyses of the data. The CodeDepends package provides complementary tools for analyzing and visualizing the code for a statistical analysis and this functionality has been integrated into the cacher package. In this chapter we describe the cacher and CodeDepends packages and provide examples of how they can be used for reproducible research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stashR package (a Set of Tools for Administering SHared Repositories) for R implements a simple key-value style database where character string keys are associated with data values. The key-value databases can be either stored locally on the user's computer or accessed remotely via the Internet. Methods specific to the stashR package allow users to share data repositories or access previously created remote data repositories. In particular, methods are available for the S4 classes localDB and remoteDB to insert, retrieve, or delete data from the database as well as to synchronize local copies of the data to the remote version of the database. Users efficiently access information from a remote database by retrieving only the data files indexed by user-specified keys and caching this data in a local copy of the remote database. The local and remote counterparts of the stashR package offer the potential to enhance reproducible research by allowing users of Sweave to cache their R computations for a research paper in a localDB database. This database can then be stored on the Internet as a remoteDB database. When readers of the research paper wish to reproduce the computations involved in creating a specific figure or calculating a specific numeric value, they can access the remoteDB database and obtain the R objects involved in the computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last few years have seen the advent of high-throughput technologies to analyze various properties of the transcriptome and proteome of several organisms. The congruency of these different data sources, or lack thereof, can shed light on the mechanisms that govern cellular function. A central challenge for bioinformatics research is to develop a unified framework for combining the multiple sources of functional genomics information and testing associations between them, thus obtaining a robust and integrated view of the underlying biology. We present a graph theoretic approach to test the significance of the association between multiple disparate sources of functional genomics data by proposing two statistical tests, namely edge permutation and node label permutation tests. We demonstrate the use of the proposed tests by finding significant association between a Gene Ontology-derived "predictome" and data obtained from mRNA expression and phenotypic experiments for Saccharomyces cerevisiae. Moreover, we employ the graph theoretic framework to recast a surprising discrepancy presented in Giaever et al. (2002) between gene expression and knockout phenotype, using expression data from a different set of experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. We discuss different approaches to this task and illustrate how they can be applied using software from the Bioconductor Project. A central problem is the high dimensionality of gene expression space, which prohibits a comprehensive statistical analysis without focusing on particular aspects of the joint distribution of the genes expression levels. Possible strategies are to do univariate gene-by-gene analysis, and to perform data-driven nonspecific filtering of genes before the actual statistical analysis. However, more focused strategies that make use of biologically relevant knowledge are more likely to increase our understanding of the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized linear mixed models with semiparametric random effects are useful in a wide variety of Bayesian applications. When the random effects arise from a mixture of Dirichlet process (MDP) model, normal base measures and Gibbs sampling procedures based on the Pólya urn scheme are often used to simulate posterior draws. These algorithms are applicable in the conjugate case when (for a normal base measure) the likelihood is normal. In the non-conjugate case, the algorithms proposed by MacEachern and Müller (1998) and Neal (2000) are often applied to generate posterior samples. Some common problems associated with simulation algorithms for non-conjugate MDP models include convergence and mixing difficulties. This paper proposes an algorithm based on the Pólya urn scheme that extends the Gibbs sampling algorithms to non-conjugate models with normal base measures and exponential family likelihoods. The algorithm proceeds by making Laplace approximations to the likelihood function, thereby reducing the procedure to that of conjugate normal MDP models. To ensure the validity of the stationary distribution in the non-conjugate case, the proposals are accepted or rejected by a Metropolis-Hastings step. In the special case where the data are normally distributed, the algorithm is identical to the Gibbs sampler.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various inference procedures for linear regression models with censored failure times have been studied extensively. Recent developments on efficient algorithms to implement these procedures enhance the practical usage of such models in survival analysis. In this article, we present robust inferences for certain covariate effects on the failure time in the presence of "nuisance" confounders under a semiparametric, partial linear regression setting. Specifically, the estimation procedures for the regression coefficients of interest are derived from a working linear model and are valid even when the function of the confounders in the model is not correctly specified. The new proposals are illustrated with two examples and their validity for cases with practical sample sizes is demonstrated via a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epidemiological work, outcomes are frequently non-normal, sample sizes may be large, and effects are often small. To relate health outcomes to geographic risk factors, fast and powerful methods for fitting spatial models, particularly for non-normal data, are required. We focus on binary outcomes, with the risk surface a smooth function of space. We compare penalized likelihood models, including the penalized quasi-likelihood (PQL) approach, and Bayesian models based on fit, speed, and ease of implementation. A Bayesian model using a spectral basis representation of the spatial surface provides the best tradeoff of sensitivity and specificity in simulations, detecting real spatial features while limiting overfitting and being more efficient computationally than other Bayesian approaches. One of the contributions of this work is further development of this underused representation. The spectral basis model outperforms the penalized likelihood methods, which are prone to overfitting, but is slower to fit and not as easily implemented. Conclusions based on a real dataset of cancer cases in Taiwan are similar albeit less conclusive with respect to comparing the approaches. The success of the spectral basis with binary data and similar results with count data suggest that it may be generally useful in spatial models and more complicated hierarchical models.