21 resultados para motion picture producers and directors
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.
Resumo:
Objective: There is convincing evidence that phonological, orthographic and semantic processes influence children’s ability to learn to read and spell words. So far only a few studies investigated the influence of implicit learning in literacy skills. Children are sensitive to the statistics of their learning environment. By frequent reading they acquire implicit knowledge about the frequency of letter patterns in written words, and they use this knowledge during reading and spelling. Additionally, semantic connections facilitate to storing of words in memory. Thus, the aim of the intervention study was to implement a word-picture training which is based on statistical and semantic learning. Furthermore, we aimed at examining the training effects in reading and spelling in comparison to an auditory-visual matching training and a working memory training program. Participants and Methods: One hundred and thirty-two children aged between 8 and 11 years participated in training in three weekly session of 12 minutes over 8 weeks, and completed other assessments of reading, spelling, working memory and intelligence before and after training. Results: Results revealed in general that the word-picture training and the auditory-visual matching training led to substantial gains in reading and spelling performance in comparison to the working-memory training. Although both children with and without learning difficulties profited in their reading and spelling after the word-picture training, the training program led to differential effects for the two groups. After the word-picture training on the one hand, children with learning difficulties profited more in spelling as children without learning difficulties, on the other hand, children without learning difficulties benefit more in word comprehension. Conclusions: These findings highlight the need for frequent reading trainings with semantic connections in order to support the acquisition of literacy skills.
Resumo:
Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left DPFC using electrophysiological and behavioural correlates during overt picture naming. Online effects were examined during A-tDCS by employing the semantic interference (SI-)Effect – a marker that denotes the functional integrity of the language system. The behavioural SI-Effect was found to be reduced, whereas the electrophysiological SI-Effect was enhanced over left compared to right temporal scalp-electrode sites. This modulation is suggested to reflect a superior tuning of neural responses within language-related generators. After -(offline) effects of A-tDCS were detected in the delta frequency band, a marker of neural inhibition. After A-tDCS there was a reduction in delta activity during picture naming and the resting state, interpreted to indicate neural disinhibition. Together, these findings demonstrate electrophysiological modulations induced by A-tDCS of the left DPFC. They suggest that A-tDCS is capable of enhancing neural processes during and after application. The present functional and oscillatory neural markers could detect positive effects of prefrontal A-tDCS, which could be of use in the neuro-rehabilitation of frontal language functions.
Resumo:
Introduction: Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants. Methods: To address this, an apparatus was developed that enables the intraoperative determination of the load–displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each. Results: At a lateral bending moment of 5 N m, the mean flexibility of all eight motion segments was 0.18 ± 0.08°/N m on the convex side and 0.24 ± 0.11°/N m on the concave side. Discussion: The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategies.
Resumo:
Pineoblastoma represents a class of primitive neuroectodermal tumors (PNET) with poorly differentiated neuroepithelial cells that are histologically indistinguishable from medulloblastomas. It is a rare tumor, typically arising in childhood, and to date only a few cytogenetic cases have been published. We report four new cases in which conventional cytogenetics demonstrated the presence of an abnormal clone. The tumors showed a variety of ploidy levels, from hypodiploid to hypertetraploid. Both structural and numerical aberrations were frequent, and in three out of the four cases a large degree of cell-to-cell variation was observed. The most frequently involved chromosome in structural rearrangements was chromosome 1, observed in three of the four cases. The short arm was involved in two of the three cases; in the third case, the anomaly was in the long arm. Two cases showed unbalanced gain of chromosome 17q, one of them showing i(17)(q10). Together, the four cases illustrate the complex karyotypic nature of this tumor type and represent a step toward determining whether a nonrandom cytogenetic picture exists and how this may be related to other associated tumor types.
Resumo:
When patients enter our emergency room with suspected multiple injuries, Statscan provides a full body anterior and lateral image for initial diagnosis, and then zooms in on specific smaller areas for a more detailed evaluation. In order to examine the possible role of Statscan in the management of multiply injured patients we implemented a modified ATLS((R)) algorithm, where X-ray of C-spine, chest and pelvis have been replaced by single-total a.p./lat. body radiograph. Between 15 October 2006 and 1 February 2007 143 trauma patients (mean ISS 15+/-14 (3-75)) were included. We compared the time in resuscitation room to 650 patients (mean ISS 14+/-14 (3-75)) which were treated between 1 January 2002 and 1 January 2004 according to conventional ATLS protocol. The total-body scanning time was 3.5 min (3-6 min) compared to 25.7 (8-48 min) for conventional X-rays, The total ER time was unchanged 28.7 min (13-58 min) compared to 29.1 min (15-65 min) using conventional plain radiography. In 116/143 patients additional CT scans were necessary. In 98/116 full body trauma CT scans were performed. In 18/116 patients selective CT scans were ordered based on Statscan findings. In 43/143 additional conventional X-rays had to be performed, mainly due to inadequate a.p. views of fractured bones. All radiographs were transmitted over the hospital network (Picture Archiving and Communication System, PACS) for immediate simultaneous viewing at different places. The rapid availability of images for interpretation because of their digital nature and the reduced need for repeat exposures because of faulty radiography are also felt to be strengths.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
Equine pastern vasculitis is clinically challenging and the underlying aetiopathogenesis is unclear. The aims of this retrospective study were to establish histopathological criteria for pastern vasculitis, to look for an underlying cause, to investigate whether the histopathological lesions are associated with a distinct clinical picture, to assess if and how the clinical picture varies, and to determine the treatment response. Skin biopsies and clinical data from 20 horses with a diagnosis of vasculitis of the distal extremities were investigated and histology was compared to biopsies from healthy horses. It was concluded that intramural inflammatory cells, leukocytoclasia with nuclear dust, thickening and oedema of the vessel walls, and microhaemorrhages are highly specific histological findings in equine pastern vasculitis. Based on the feedback from the clinicians, the lesions were mostly seen on the lateral and medial aspects of un-pigmented legs. Lesions in white skin were characterised by exudation and crusts, whereas those in pigmented skin were alopecic and characterised by scaling. The response to treatment was poor and the prognosis guarded. No association was found between any of the histopathological findings and a distinct clinical picture. An underlying cause of equine pastern vasculitis could not be identified. Considering the large number of confounding factors, the causative agents are difficult to identify, but may involve drugs or a hypersensitivity reactions to yet unknown antigens.
Resumo:
Rural areas in Laos are experiencing a rapid transformation from traditional rice-based shifting cultivation systems to more permanent and diversified market-oriented cultivation systems. The consequences of these changes for local livelihoods are not well known. This study analyzes the impact of shifting cultivation change on the livelihood of rural people in six villages in three districts of northern and central Laos. Focus group discussions and household interview questionnaires were employed for data collection. The study reveals that the shifting cultivation of rice is still important in these communities, but it is being intensified as cash crops are introduced. Changes in shifting cultivation during the past ten years vary greatly between the communities studied. In the northern study sites, it is decreasing in areas with rubber expansion and increasing in areas with maize expansion, while it is stable in the central site, where sugarcane is an important cash crop. The impacts of land use change on livelihoods are also diverse. Cash crop producers hold more agricultural land than non-cash crop producers, and rubber and sugarcane producers have fewer rice shortages than non-producers. In the future, livelihood improvements in the central study site may be replicated in the northern sites, but this depends to a large extent on the economic and agricultural settings into which cash crops and other development opportunities are introduced. Moreover, the expansion of cash crops appears to counteract Lao policies aimed at replacing shifting cultivation areas with forests.
Resumo:
Most previous neurophysiological studies evoked emotions by presenting visual stimuli. Models of the emotion circuits in the brain have for the most part ignored emotions arising from musical stimuli. To our knowledge, this is the first emotion brain study which examined the influence of visual and musical stimuli on brain processing. Highly arousing pictures of the International Affective Picture System and classical musical excerpts were chosen to evoke the three basic emotions of happiness, sadness and fear. The emotional stimuli modalities were presented for 70 s either alone or combined (congruent) in a counterbalanced and random order. Electroencephalogram (EEG) Alpha-Power-Density, which is inversely related to neural electrical activity, in 30 scalp electrodes from 24 right-handed healthy female subjects, was recorded. In addition, heart rate (HR), skin conductance responses (SCR), respiration, temperature and psychometrical ratings were collected. Results showed that the experienced quality of the presented emotions was most accurate in the combined conditions, intermediate in the picture conditions and lowest in the sound conditions. Furthermore, both the psychometrical ratings and the physiological involvement measurements (SCR, HR, Respiration) were significantly increased in the combined and sound conditions compared to the picture conditions. Finally, repeated measures ANOVA revealed the largest Alpha-Power-Density for the sound conditions, intermediate for the picture conditions, and lowest for the combined conditions, indicating the strongest activation in the combined conditions in a distributed emotion and arousal network comprising frontal, temporal, parietal and occipital neural structures. Summing up, these findings demonstrate that music can markedly enhance the emotional experience evoked by affective pictures.
Resumo:
The in vitro activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 Acinetobacter baumannii (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 Pseudomonas aeruginosa (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90 values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistant A. baumannii and P. aeruginosa isolates.
Resumo:
The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.
Resumo:
Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.