108 resultados para meta study

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Land use science has traditionally used case-study approaches for in-depth investigation of land use change processes and impacts. Meta-studies synthesize findings across case-study evidence to identify general patterns. In this paper, we provide a review of meta-studies in land use science. Various meta-studies have been conducted, which synthesize deforestation and agricultural land use change processes, while other important changes, such as urbanization, wetland conversion, and grassland dynamics have hardly been addressed. Meta-studies of land use change impacts focus mostly on biodiversity and biogeochemical cycles, while meta-studies of socioeconomic consequences are rare. Land use change processes and land use change impacts are generally addressed in isolation, while only few studies considered trajectories of drivers through changes to their impacts and their potential feedbacks. We provide a conceptual framework for linking meta-studies of land use change processes and impacts for the analysis of coupled human–environmental systems. Moreover, we provide suggestions for combining meta-studies of different land use change processes to develop a more integrated theory of land use change, and for combining meta-studies of land use change impacts to identify tradeoffs between different impacts. Land use science can benefit from an improved conceptualization of land use change processes and their impacts, and from new methods that combine meta-study findings to advance our understanding of human–environmental systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective To examine the presence and extent of small study effects in clinical osteoarthritis research. Design Meta-epidemiological study. Data sources 13 meta-analyses including 153 randomised trials (41 605 patients) that compared therapeutic interventions with placebo or non-intervention control in patients with osteoarthritis of the hip or knee and used patients’ reported pain as an outcome. Methods We compared estimated benefits of treatment between large trials (at least 100 patients per arm) and small trials, explored funnel plots supplemented with lines of predicted effects and contours of significance, and used three approaches to estimate treatment effects: meta-analyses including all trials irrespective of sample size, meta-analyses restricted to large trials, and treatment effects predicted for large trials. Results On average, treatment effects were more beneficial in small than in large trials (difference in effect sizes −0.21, 95% confidence interval −0.34 to −0.08, P=0.001). Depending on criteria used, six to eight funnel plots indicated small study effects. In six of 13 meta-analyses, the overall pooled estimate suggested a clinically relevant, significant benefit of treatment, whereas analyses restricted to large trials and predicted effects in large trials yielded smaller non-significant estimates. Conclusions Small study effects can often distort results of meta-analyses. The influence of small trials on estimated treatment effects should be routinely assessed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives To examine the extent of multiplicity of data in trial reports and to assess the impact of multiplicity on meta-analysis results. Design Empirical study on a cohort of Cochrane systematic reviews. Data sources All Cochrane systematic reviews published from issue 3 in 2006 to issue 2 in 2007 that presented a result as a standardised mean difference (SMD). We retrieved trial reports contributing to the first SMD result in each review, and downloaded review protocols. We used these SMDs to identify a specific outcome for each meta-analysis from its protocol. Review methods Reviews were eligible if SMD results were based on two to ten randomised trials and if protocols described the outcome. We excluded reviews if they only presented results of subgroup analyses. Based on review protocols and index outcomes, two observers independently extracted the data necessary to calculate SMDs from the original trial reports for any intervention group, time point, or outcome measure compatible with the protocol. From the extracted data, we used Monte Carlo simulations to calculate all possible SMDs for every meta-analysis. Results We identified 19 eligible meta-analyses (including 83 trials). Published review protocols often lacked information about which data to choose. Twenty-four (29%) trials reported data for multiple intervention groups, 30 (36%) reported data for multiple time points, and 29 (35%) reported the index outcome measured on multiple scales. In 18 meta-analyses, we found multiplicity of data in at least one trial report; the median difference between the smallest and largest SMD results within a meta-analysis was 0.40 standard deviation units (range 0.04 to 0.91). Conclusions Multiplicity of data can affect the findings of systematic reviews and meta-analyses. To reduce the risk of bias, reviews and meta-analyses should comply with prespecified protocols that clearly identify time points, intervention groups, and scales of interest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clinicians find standardized mean differences (SMDs) calculated from continuous outcomes difficult to interpret. Our objective was to determine the performance of methods in converting SMDs or means to odds ratios of treatment response and numbers needed to treat (NNTs) as more intuitive measures of treatment effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of randomised controlled trials (RCTs) should incorporate characteristics (such as concealment of randomised allocation and blinding of participants and personnel) that avoid biases resulting from lack of comparability of the intervention and control groups. Empirical evidence suggests that the absence of such characteristics leads to biased intervention effect estimates, but the findings of different studies are not consistent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Publication bias and related bias in meta-analysis is often examined by visually checking for asymmetry in funnel plots of treatment effect against its standard error. Formal statistical tests of funnel plot asymmetry have been proposed, but when applied to binary outcome data these can give false-positive rates that are higher than the nominal level in some situations (large treatment effects, or few events per trial, or all trials of similar sizes). We develop a modified linear regression test for funnel plot asymmetry based on the efficient score and its variance, Fisher's information. The performance of this test is compared to the other proposed tests in simulation analyses based on the characteristics of published controlled trials. When there is little or no between-trial heterogeneity, this modified test has a false-positive rate close to the nominal level while maintaining similar power to the original linear regression test ('Egger' test). When the degree of between-trial heterogeneity is large, none of the tests that have been proposed has uniformly good properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To assess the methodology of meta-analyses published in leading general and specialist medical journals over a 10-year period. STUDY DESIGN AND SETTING: Volumes 1993-2002 of four general medicine journals and four specialist journals were searched by hand for meta-analyses including at least five controlled trials. Characteristics were assessed using a standardized questionnaire. RESULTS: A total of 272 meta-analyses, which included a median of 11 trials (range 5-195), were assessed. Most (81%) were published in general medicine journals. The median (range) number of databases searched increased from 1 (1-9) in 1993/1994 to 3.5 (1-21) in 2001/2002, P<0.0001. The proportion of meta-analyses including searches by hand (10% in 1993/1994, 25% in 2001/2002, P=0.005), searches of the grey literature (29%, 51%, P=0.010 by chi-square test), and of trial registers (10%, 32%, P=0.025) also increased. Assessments of the quality of trials also became more common (45%, 70%, P=0.008), including whether allocation of patients to treatment groups had been concealed (24%, 60%, P=0.001). The methodological and reporting quality was consistently higher in general medicine compared to specialist journals. CONCLUSION: Many meta-analyses published in leading journals have important methodological limitations. The situation has improved in recent years but considerable room for further improvements remains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To examine whether the association of inadequate or unclear allocation concealment and lack of blinding with biased estimates of intervention effects varies with the nature of the intervention or outcome. DESIGN: Combined analysis of data from three meta-epidemiological studies based on collections of meta-analyses. DATA SOURCES: 146 meta-analyses including 1346 trials examining a wide range of interventions and outcomes. MAIN OUTCOME MEASURES: Ratios of odds ratios quantifying the degree of bias associated with inadequate or unclear allocation concealment, and lack of blinding, for trials with different types of intervention and outcome. A ratio of odds ratios <1 implies that inadequately concealed or non-blinded trials exaggerate intervention effect estimates. RESULTS: In trials with subjective outcomes effect estimates were exaggerated when there was inadequate or unclear allocation concealment (ratio of odds ratios 0.69 (95% CI 0.59 to 0.82)) or lack of blinding (0.75 (0.61 to 0.93)). In contrast, there was little evidence of bias in trials with objective outcomes: ratios of odds ratios 0.91 (0.80 to 1.03) for inadequate or unclear allocation concealment and 1.01 (0.92 to 1.10) for lack of blinding. There was little evidence for a difference between trials of drug and non-drug interventions. Except for trials with all cause mortality as the outcome, the magnitude of bias varied between meta-analyses. CONCLUSIONS: The average bias associated with defects in the conduct of randomised trials varies with the type of outcome. Systematic reviewers should routinely assess the risk of bias in the results of trials, and should report meta-analyses restricted to trials at low risk of bias either as the primary analysis or in conjunction with less restrictive analyses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the association of adequate allocation concealment and patient blinding with estimates of treatment benefits in osteoarthritis trials. METHODS: We performed a meta-epidemiologic study of 16 meta-analyses with 175 trials that compared therapeutic interventions with placebo or nonintervention control in patients with hip or knee osteoarthritis. We calculated effect sizes from the differences in means of pain intensity between groups at the end of followup divided by the pooled SD and compared effect sizes between trials with and trials without adequate methodology. RESULTS: Effect sizes tended to be less beneficial in 46 trials with adequate allocation concealment compared with 112 trials with inadequate or unclear concealment of allocation (difference -0.15; 95% confidence interval [95% CI] -0.31, 0.02). Selection bias associated with inadequate or unclear concealment of allocation was most pronounced in meta-analyses with large estimated treatment benefits (P for interaction < 0.001), meta-analyses with high between-trial heterogeneity (P = 0.009), and meta-analyses of complementary medicine (P = 0.019). Effect sizes tended to be less beneficial in 64 trials with adequate blinding of patients compared with 58 trials without (difference -0.15; 95% CI -0.39, 0.09), but differences were less consistent and disappeared after accounting for allocation concealment. Detection bias associated with a lack of adequate patient blinding was most pronounced for nonpharmacologic interventions (P for interaction < 0.001). CONCLUSION: Results of osteoarthritis trials may be affected by selection and detection bias. Adequate concealment of allocation and attempts to blind patients will minimize these biases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To examine whether excluding patients from the analysis of randomised trials are associated with biased estimates of treatment effects and higher heterogeneity between trials. DESIGN: Meta-epidemiological study based on a collection of meta-analyses of randomised trials. DATA SOURCES: 14 meta-analyses including 167 trials that compared therapeutic interventions with placebo or non-intervention control in patients with osteoarthritis of the hip or knee and used patient reported pain as an outcome. METHODS: Effect sizes were calculated from differences in means of pain intensity between groups at the end of follow-up, divided by the pooled standard deviation. Trials were combined by using random effects meta-analysis. Estimates of treatment effects were compared between trials with and trials without exclusions from the analysis, and the impact of restricting meta-analyses to trials without exclusions was assessed. RESULTS: 39 trials (23%) had included all patients in the analysis. In 128 trials (77%) some patients were excluded from the analysis. Effect sizes from trials with exclusions tended to be more beneficial than those from trials without exclusions (difference -0.13, 95% confidence interval -0.29 to 0.04). However, estimates of bias between individual meta-analyses varied considerably (tau(2)=0.07). Tests of interaction between exclusions from the analysis and estimates of treatment effects were positive in five meta-analyses. Stratified analyses indicated that differences in effect sizes between trials with and trials without exclusions were more pronounced in meta-analyses with high between trial heterogeneity, in meta-analyses with large estimated treatment benefits, and in meta-analyses of complementary medicine. Restriction of meta-analyses to trials without exclusions resulted in smaller estimated treatment benefits, larger P values, and considerable decreases in between trial heterogeneity. CONCLUSION: Excluding patients from the analysis in randomised trials often results in biased estimates of treatment effects, but the extent and direction of bias is unpredictable. Results from intention to treat analyses should always be described in reports of randomised trials. In systematic reviews, the influence of exclusions from the analysis on estimated treatment effects should routinely be assessed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To study the inter-observer variation related to extraction of continuous and numerical rating scale data from trial reports for use in meta-analyses. DESIGN: Observer agreement study. DATA SOURCES: A random sample of 10 Cochrane reviews that presented a result as a standardised mean difference (SMD), the protocols for the reviews and the trial reports (n=45) were retrieved. DATA EXTRACTION: Five experienced methodologists and five PhD students independently extracted data from the trial reports for calculation of the first SMD result in each review. The observers did not have access to the reviews but to the protocols, where the relevant outcome was highlighted. The agreement was analysed at both trial and meta-analysis level, pairing the observers in all possible ways (45 pairs, yielding 2025 pairs of trials and 450 pairs of meta-analyses). Agreement was defined as SMDs that differed less than 0.1 in their point estimates or confidence intervals. RESULTS: The agreement was 53% at trial level and 31% at meta-analysis level. Including all pairs, the median disagreement was SMD=0.22 (interquartile range 0.07-0.61). The experts agreed somewhat more than the PhD students at trial level (61% v 46%), but not at meta-analysis level. Important reasons for disagreement were differences in selection of time points, scales, control groups, and type of calculations; whether to include a trial in the meta-analysis; and data extraction errors made by the observers. In 14 out of the 100 SMDs calculated at the meta-analysis level, individual observers reached different conclusions than the originally published review. CONCLUSIONS: Disagreements were common and often larger than the effect of commonly used treatments. Meta-analyses using SMDs are prone to observer variation and should be interpreted with caution. The reliability of meta-analyses might be improved by having more detailed review protocols, more than one observer, and statistical expertise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE To investigate whether it is valid to combine follow-up and change data when conducting meta-analyses of continuous outcomes. STUDY DESIGN AND SETTING Meta-epidemiological study of randomized controlled trials in patients with osteoarthritis of the knee/hip, which assessed patient-reported pain. We calculated standardized mean differences (SMDs) based on follow-up and change data, and pooled within-trial differences in SMDs. We also derived pooled SMDs indicating the largest treatment effect within a trial (optimistic selection of SMDs) and derived pooled SMDs from the estimate indicating the smallest treatment effect within a trial (pessimistic selection of SMDs). RESULTS A total of 21 meta-analyses with 189 trials with 292 randomized comparisons in 41,256 patients were included. On average, SMDs were 0.04 standard deviation units more beneficial when follow-up values were used (difference in SMDs: -0.04; 95% confidence interval: -0.13, 0.06; P=0.44). In 13 meta-analyses (62%), there was a relevant difference in clinical and/or significance level between optimistic and pessimistic pooled SMDs. CONCLUSION On average, there is no relevant difference between follow-up and change data SMDs, and combining these estimates in meta-analysis is generally valid. Decision on which type of data to use when both follow-up and change data are available should be prespecified in the meta-analysis protocol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Empirical research has illustrated an association between study size and relative treatment effects, but conclusions have been inconsistent about the association of study size with the risk of bias items. Small studies give generally imprecisely estimated treatment effects, and study variance can serve as a surrogate for study size. METHODS We conducted a network meta-epidemiological study analyzing 32 networks including 613 randomized controlled trials, and used Bayesian network meta-analysis and meta-regression models to evaluate the impact of trial characteristics and study variance on the results of network meta-analysis. We examined changes in relative effects and between-studies variation in network meta-regression models as a function of the variance of the observed effect size and indicators for the adequacy of each risk of bias item. Adjustment was performed both within and across networks, allowing for between-networks variability. RESULTS Imprecise studies with large variances tended to exaggerate the effects of the active or new intervention in the majority of networks, with a ratio of odds ratios of 1.83 (95% CI: 1.09,3.32). Inappropriate or unclear conduct of random sequence generation and allocation concealment, as well as lack of blinding of patients and outcome assessors, did not materially impact on the summary results. Imprecise studies also appeared to be more prone to inadequate conduct. CONCLUSIONS Compared to more precise studies, studies with large variance may give substantially different answers that alter the results of network meta-analyses for dichotomous outcomes.