35 resultados para Substitution of Components
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.
Resumo:
Thirty-two multiparous Holstein cows were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation and dietary grain source on performance and lactation during the periparturient period. Cows were fed a total mixed ration consisting of either a barley-based diet (BBD) or a corn-based diet (CBD) from 21 d before anticipated calving through 28 d after calving. The Cr-Met was supplemented at dosages of 0 or 0.08 mg of Cr/kg of metabolic body weight. The study was designed as a randomized complete block design with 2 (Cr-Met levels) x 2 (grain sources) factorial arrangement. There was no Cr effect on prepartum dry matter intake (DMI) or postpartum DMI, body weight (BW), net energy balance, and whole tract apparent digestibility of nutrients. Prepartum DMI as a percentage of BW tended to increase with Cr-Met. Supplemental Cr-Met tended to increase milk yield whereas milk protein percentage decreased. Pre- and postpartum DMI, BW, net energy balance, milk yield, and milk composition were not affected by substituting ground barley with ground corn. The addition of Cr-Met increased prepartum DMI and tended to increase postpartum DMI of the BBD but not the CBD. The change in prepartum DMI was smaller when the BBD was supplemented with Cr-Met but remained unchanged when the CBD was supplemented with Cr-Met. Yields of crude protein and total solids in milk and prepartum digestibility of DM and organic matter tended to increase when Cr-Met was added to the BBD but remained unchanged when added to the CBD. Periparturient cows failed to respond to the grain source of the diet, whereas they showed greater response in milk yield to diets supplemented with Cr-Met. In conclusion, the present results demonstrate that the beneficial effect of Cr-Met supplementation during the periparturient period to improve feed intake may depend on the grain source of the diet.
Resumo:
This paper develops a process model of how and why complementarity and substitution form over time between contractual and relational governance in the context of information systems outsourcing. Our analysis identifies four distinct process patterns that explain this formation as the outcome of interaction processes between key elements of both contractual and relational governance. These patterns unveil the dynamic nature of complementarity and substitution. In particular, we show that the relationship between contractual and relational governance oscillates between complementarity and substitution. Those oscillations are triggered mainly by three types of contextual events (goal fuzziness, goal conflict, and goal misalignment). Surprisingly, substitution of informal control did not occur as an immediate reaction to external events but emerged as a consequence of preceding complementarity. Thus, our study challenges the prevailing view of an either/or dichotomy of complementarity and substitution by showing that they are causally connected over time.
Resumo:
As pituitary function depends on the integrity of the hypothalamic-pituitary axis, any defect in the development and organogenesis of this gland may account for a form of combined pituitary hormone deficiency (CPHD). A mutation in a novel, tissue-specific, paired-like homeodomain transcription factor, termed Prophet of Pit-1 (PROP1), has been identified as causing the Ames dwarf (df) mouse phenotype, and thereafter, different PROP1 gene alterations have been found in humans with CPHD. We report on the follow-up of two consanguineous families (n = 12), with five subjects affected with CPHD (three males and two females) caused by the same nucleotide C to T transition, resulting in the substitution of Arg-->Cys in PROP1 at codon 120. Importantly, there is a variability of phenotype, even among patients with the same mutation. The age at diagnosis was dependent on the severity of symptoms, ranging from 9 months to 8 yr. Although in one patient TSH deficiency was the first symptom of the disorder, all patients became symptomatic by exhibiting severe growth retardation and failure to thrive, which was mainly caused by GH deficiency (n = 4). The secretion of the pituitary-derived hormones (GH, PRL, TSH, LH, and FSH) declined gradually with age, following a different pattern in each individual; therefore, the deficiencies developed over a variable period of time. All of the subjects entered puberty spontaneously, and the two females also experienced menarche and periods before a replacement therapy was necessary.
Resumo:
Electronic tuning effects of substituents at the 4- and 8-positions of benzothiadiazole (BTD) within the fused tetrathiafulvalene–BTD donor–acceptor dyad have been studied. The electron acceptor strength of BTD is greatly increased by replacing Br with CN groups, extending the optical absorption of the small dyad into the near-IR region and importantly, the charge transport can be switched from p-type to ambipolar behaviour.
Resumo:
Previous work has shown that the -tocopherol transfer protein ( -TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which -TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of -TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of -TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired -TTP-assisted secretion of -tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.
Resumo:
Despite 3 decades of focused chemical, biological, structural, and clinical developments, unusual properties of somatostatin (SRIF, 1) analogues are still being uncovered. Here we report the unexpected functional properties of 1 and the octapeptide cyclo(3-14)H-Cys-Phe-Phe-Trp(8)-Lys-Thr-Phe-Cys-OH (somatostatin numbering; OLT-8, 9) substituted by imBzl-l- or -d-His at position 8. These analogues were tested for their binding affinity to the five human somatostatin receptors (sst(1-5)), as well as for their functional properties (or functionalities) in an sst(3) internalization assay and in an sst(3) luciferase reporter gene assay. While substitution of Trp(8) in somatostatin by imBzl-l- or -d-His(8) results in sst(3) selectivity, substitution of Trp(8) in the octapeptide 9 by imBzl-l- or -d-His(8) results in loss of binding affinity for sst(1,2,4,5) and a radical functional switch from agonist to antagonist.
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.
Resumo:
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.
Resumo:
Chelated somatostatin agonists have been shown to be sensitive to N-terminal radiometal modifications, with Ga-DOTA agonists having significantly higher binding affinity than their Lu-, In-, and Y-DOTA correlates. Recently, somatostatin antagonists have been successfully developed as alternative tracers to agonists. The aim of this study was to evaluate whether chelated somatostatin antagonists are also sensitive to radiometal modifications and how. We have synthesized 3 different somatostatin antagonists, DOTA-p-NO(2)-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), DOTA-Cpa-c[D-Cys-Aph(Hor)-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2) (DOTA-JR11), and DOTA-p-Cl-Phe-c[D-Cys-Tyr-D-Aph(Cbm)-Lys-Thr-Cys]-D-Tyr-NH(2), and added various radiometals including In(III), Y(III), Lu(III), Cu(II), and Ga(III). We also replaced DOTA with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and added Ga(III). The binding affinity of somatostatin receptors 1 through 5 was evaluated in all cases. In all 3 resulting antagonists, the Ga-DOTA analogs were the lowest-affinity radioligands, with a somatostatin receptor 2 binding affinity up to 60 times lower than the respective Y-DOTA, Lu-DOTA, or In-DOTA compounds. Interestingly, however, substitution of DOTA by the NODAGA chelator was able to increase massively its binding affinity in contrast to the Ga-DOTA analog. The 3 NODAGA analogs are antagonists in functional tests. In vivo biodistribution studies comparing (68)Ga-DOTATATE agonist with (68)Ga-DOTA-JR11 and (68)Ga-NODAGA-JR11 showed not only that the JR11 antagonist radioligands were superior to the agonist ligands but also that (68)Ga-NODAGA-JR11 was the tracer of choice and preferable to (68)Ga-DOTA-JR11 in transplantable HEK293-hsst(2) tumors in mice. One may therefore generalize that somatostatin receptor 2 antagonists are sensitive to radiometal modifications and may preferably be coupled with a (68)Ga-NODAGA chelator-radiometal complex.
Resumo:
eIF4E, the cytoplasmatic cap-binding protein, is required for efficient cap-dependent translation. We have studied the influence of mutations that alter the activity and/or expression level of eIF4E on haploid and diploid cells in the yeast S. cerevisiae. Temperature-sensitive eIF4E mutants with reduced levels of expression and reduced cap-binding affinity clearly show a loss in haploid adhesion and diploid pseudohyphenation upon starvation for nitrogen. Some of these mutations affect the interaction of the cap-structure of mRNAs with the cap-binding groove of eIF4E. The observed reduction in adhesive and pseudohyphenating properties is less evident for an eIF4E mutant that shows reduced interaction with p20 (an eIF4E-binding protein) or for a p20-knockout mutant. Loss of adhesive and pseudohyphenating properties was not only observed for eIF4E mutants but also for knockout mutants of components of eIF4F such as eIF4B and eIF4G1. We conclude from these experiments that mutations that affect components of the eIF4F-complex loose properties such as adhesion and pseudohyphal differentiation, most likely due to less effective translation of required mRNAs for such processes.
Resumo:
Background This study addressed the temporal properties of personality disorders and their treatment by schema-centered group psychotherapy. It investigated the change mechanisms of psychotherapy using a novel method by which psychotherapy can be modeled explicitly in the temporal domain. Methodology and Findings 69 patients were assigned to a specific schema-centered behavioral group psychotherapy, 26 to social skills training as a control condition. The largest diagnostic subgroups were narcissistic and borderline personality disorder. Both treatments offered 30 group sessions of 100 min duration each, at a frequency of two sessions per week. Therapy process was described by components resulting from principal component analysis of patients' session-reports that were obtained after each session. These patient-assessed components were Clarification, Bond, Rejection, and Emotional Activation. The statistical approach focused on time-lagged associations of components using time-series panel analysis. This method provided a detailed quantitative representation of therapy process. It was found that Clarification played a core role in schema-centered psychotherapy, reducing rejection and regulating the emotion of patients. This was also a change mechanism linked to therapy outcome. Conclusions/Significance The introduced process-oriented methodology allowed to highlight the mechanisms by which psychotherapeutic treatment became effective. Additionally, process models depicted the actual patterns that differentiated specific diagnostic subgroups. Time-series analysis explores Granger causality, a non-experimental approximation of causality based on temporal sequences. This methodology, resting upon naturalistic data, can explicate mechanisms of action in psychotherapy research and illustrate the temporal patterns underlying personality disorders.
Resumo:
The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.
Resumo:
BACKGROUND: T-cell-mediated hypersensitivity is a rare but serious manifestation of drug therapy. OBJECTIVES: To explore the mechanisms of drug presentation to T cells and the possibility that generation of metabolite-specific T cells may provoke cross-sensitization between drugs. METHODS: A lymphocyte transformation test was performed on 13 hypersensitive patients with carbamazepine, oxcarbazepine, and carbamazepine metabolites. Serial dilution experiments were performed to generate drug (metabolite)-specific T-cell clones to explore the structural basis of the T-cell response and mechanisms of antigen presentation. 3-Dimensional energy-minimized structures were generated by using computer modeling. The role of drug metabolism was analyzed with 1-aminobenzotriazole. RESULTS: Lymphocytes and T-cell clones proliferated with carbamazepine, oxcarbazepine, and some (carbamazepine 10,11 epoxide, 10-hydroxy carbamazepine) but not all stable carbamazepine metabolites. Structure activity studies using 29 carbamazepine (metabolite)-specific T-cell clones revealed 4 patterns of drug recognition, which could be explained by generation of preferred 3-dimensional structural conformations. T cells were stimulated by carbamazepine (metabolites) bound directly to MHC in the absence of processing. The activation threshold for T-cell proliferation varied between 5 minutes and 4 hours. 1-Aminobenzotriazole, which inhibits cytochrome P450 activity, did not prevent carbamazepine-related T-cell proliferation. Substitution of the terminal amine residue of carbamazepine with a methyl group diminished T-cell proliferation. CONCLUSION: These data show that carbamazepine and certain stable carbamazepine metabolites stimulate T cells rapidly via a direct interaction with MHC and specific T-cell receptors. CLINICAL IMPLICATIONS: Some patients with a history of carbamazepine hypersensitivity possess T cells that cross-react with oxcarbazepine, providing a rationale for cross-sensitivity between the 2 drugs.