2 resultados para Modal method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We define a rank function for formulae of the propositional modal μ-calculus such that the rank of a fixed point is strictly bigger than the rank of any of its finite approximations. A rank function of this kind is needed, for instance, to establish the collapse of the modal μ-hierarchy over transitive transition systems. We show that the range of the rank function is ωω. Further we establish that the rank is computable by primitive recursion, which gives us a uniform method to generate formulae of arbitrary rank below ωω.
Resumo:
The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for modal logics by induction on a nested-sequent derivation. This algorithm is applied to all the logics of the so-called modal cube.