Modal interpolation via nested sequents
Data(s) |
01/03/2015
31/12/1969
|
---|---|
Resumo |
The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for modal logics by induction on a nested-sequent derivation. This algorithm is applied to all the logics of the so-called modal cube. |
Formato |
application/pdf application/pdf |
Identificador |
http://boris.unibe.ch/70699/1/1-s2.0-S0168007214001183-main.pdf http://boris.unibe.ch/70699/8/kuznets%20-%20interpolation.pdf Fitting, Melvin; Kuznets, Roman (2015). Modal interpolation via nested sequents. Annals of pure and applied logic, 166(3), pp. 274-305. Elsevier 10.1016/j.apal.2014.11.002 <http://dx.doi.org/10.1016/j.apal.2014.11.002> doi:10.7892/boris.70699 info:doi:10.1016/j.apal.2014.11.002 urn:issn:0168-0072 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://boris.unibe.ch/70699/ |
Direitos |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/embargoedAccess |
Fonte |
Fitting, Melvin; Kuznets, Roman (2015). Modal interpolation via nested sequents. Annals of pure and applied logic, 166(3), pp. 274-305. Elsevier 10.1016/j.apal.2014.11.002 <http://dx.doi.org/10.1016/j.apal.2014.11.002> |
Palavras-Chave | #000 Computer science, knowledge & systems #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |