Modal interpolation via nested sequents


Autoria(s): Fitting, Melvin; Kuznets, Roman
Data(s)

01/03/2015

31/12/1969

Resumo

The main method of proving the Craig Interpolation Property (CIP) constructively uses cut-free sequent proof systems. Until now, however, no such method has been known for proving the CIP using more general sequent-like proof formalisms, such as hypersequents, nested sequents, and labelled sequents. In this paper, we start closing this gap by presenting an algorithm for proving the CIP for modal logics by induction on a nested-sequent derivation. This algorithm is applied to all the logics of the so-called modal cube.

Formato

application/pdf

application/pdf

Identificador

http://boris.unibe.ch/70699/1/1-s2.0-S0168007214001183-main.pdf

http://boris.unibe.ch/70699/8/kuznets%20-%20interpolation.pdf

Fitting, Melvin; Kuznets, Roman (2015). Modal interpolation via nested sequents. Annals of pure and applied logic, 166(3), pp. 274-305. Elsevier 10.1016/j.apal.2014.11.002 <http://dx.doi.org/10.1016/j.apal.2014.11.002>

doi:10.7892/boris.70699

info:doi:10.1016/j.apal.2014.11.002

urn:issn:0168-0072

Idioma(s)

eng

Publicador

Elsevier

Relação

http://boris.unibe.ch/70699/

Direitos

info:eu-repo/semantics/restrictedAccess

info:eu-repo/semantics/embargoedAccess

Fonte

Fitting, Melvin; Kuznets, Roman (2015). Modal interpolation via nested sequents. Annals of pure and applied logic, 166(3), pp. 274-305. Elsevier 10.1016/j.apal.2014.11.002 <http://dx.doi.org/10.1016/j.apal.2014.11.002>

Palavras-Chave #000 Computer science, knowledge & systems #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed