Justifying induction on modal μ-formulae
| Data(s) |
2014
|
|---|---|
| Resumo |
We define a rank function for formulae of the propositional modal μ-calculus such that the rank of a fixed point is strictly bigger than the rank of any of its finite approximations. A rank function of this kind is needed, for instance, to establish the collapse of the modal μ-hierarchy over transitive transition systems. We show that the range of the rank function is ωω. Further we establish that the rank is computable by primitive recursion, which gives us a uniform method to generate formulae of arbitrary rank below ωω. |
| Formato |
application/pdf |
| Identificador |
http://boris.unibe.ch/61785/1/aks14.pdf Alberucci, Luca; Krähenbühl, Jürg; Studer, Thomas (2014). Justifying induction on modal μ-formulae. Logic Journal of IGPL, 22(6), pp. 805-817. Oxford University Press 10.1093/jigpal/jzu001 <http://dx.doi.org/10.1093/jigpal/jzu001> doi:10.7892/boris.61785 info:doi:10.1093/jigpal/jzu001 urn:issn:1367-0751 |
| Idioma(s) |
eng |
| Publicador |
Oxford University Press |
| Relação |
http://boris.unibe.ch/61785/ |
| Direitos |
info:eu-repo/semantics/openAccess |
| Fonte |
Alberucci, Luca; Krähenbühl, Jürg; Studer, Thomas (2014). Justifying induction on modal μ-formulae. Logic Journal of IGPL, 22(6), pp. 805-817. Oxford University Press 10.1093/jigpal/jzu001 <http://dx.doi.org/10.1093/jigpal/jzu001> |
| Palavras-Chave | #000 Computer science, knowledge & systems #510 Mathematics |
| Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |