17 resultados para Geometry, Non-Euclidean

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore a generalisation of the L´evy fractional Brownian field on the Euclidean space based on replacing the Euclidean norm with another norm. A characterisation result for admissible norms yields a complete description of all self-similar Gaussian random fields with stationary increments. Several integral representations of the introduced random fields are derived. In a similar vein, several non-Euclidean variants of the fractional Poisson field are introduced and it is shown that they share the covariance structure with the fractional Brownian field and converge to it. The shape parameters of the Poisson and Brownian variants are related by convex geometry transforms, namely the radial pth mean body and the polar projection transforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the operator variability of different finishing and polishing techniques. After placing 120 composite restorations (Tetric EvoCeram) in plexiglassmolds, the surface of the specimens was roughened in a standardized manner. Twelve operators with different experience levels polished the specimens using the following finishing/polishing procedures: method 1 (40 ?m diamond [40D], 15 ?m diamond [15D], 42 ?m silicon carbide polisher [42S], 6 ?m silicon carbide polisher [6S] and Occlubrush [O]); method 2 (40D, 42S, 6S and O); method 3 (40D, 42S, 6S and PoGo); method 4 (40D, 42S and PoGo) and method 5 (40D, 42S and O). The mean surface roughness (Ra) was measured with a profilometer. Differences between the methods were analyzed with non-parametric ANOVA and pairwise Wilcoxon signed rank tests (?=0.05). All the restorations were qualitatively assessed using SEM. Methods 3 and 4 showed the best polishing results and method 5 demonstrated the poorest. Method 5 was also most dependent on the skills of the operator. Except for method 5, all of the tested procedures reached a clinically acceptable surface polish of Ra?0.2 ?m. Polishing procedures can be simplified without increasing variability between operators and without jeopardizing polishing results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging of biological samples has been performed with a variety of techniques for example electromagnetic waves, electrons, neutrons, ultrasound and X-rays. Also conventional X-ray imaging represents the basis of medical diagnostic imaging, it remains of limited use in this application because it is based solely on the differential absorption of X-rays by tissues. Coherent and bright photon beams, such as those produced by third-generation synchrotron X-ray sources, provide further information on subtle X-ray phase changes at matter interfaces. This complements conventional X-ray absorption by edge enhancement phenomena. Thus, phase contrast imaging has the potential to improve the detection of structures on images by detecting those structures that are invisible with X-ray absorption imaging. Images of a weakly absorbing nylon fibre were recorded in in-line holography geometry using a high resolution low-noise CCD camera at the ESRF in Grenoble. The method was also applied to improve image contrast for images of biological tissues. This paper presents phase contrast microradiographs of vascular tree casts and images of a housefly. These reveal very fine structures, that remain invisible with conventional absorption contrast only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the real-time Wilson loop. Through its position and shape, the lowest lying spectral peak encodes the real and imaginary part of this complex potential. We benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. I.e. we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real- and imaginary part and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. We deploy a novel Bayesian approach to the reconstruction of spectral functions to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary part are reproduced. Finally we apply the method to quenched lattice QCD data and perform an improved estimate of both real and imaginary part of the non-perturbative heavy ǪǬ potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct the theory of dissipative hydrodynamics of uncharged fluids living on embedded space-time surfaces to first order in a derivative expansion in the case of codimension-1 surfaces (including fluid membranes) and the theory of non-dissipative hydrodynamics to second order in a derivative expansion in the case of codimension higher than one under the assumption of no angular momenta in transverse directions to the surface. This construction includes the elastic degrees of freedom, and hence the corresponding transport coefficients, that take into account transverse fluctuations of the geometry where the fluid lives. Requiring the second law of thermodynamics to be satisfied leads us to conclude that in the case of codimension-1 surfaces the stress-energy tensor is characterized by 2 hydrodynamic and 1 elastic independent transport coefficient to first order in the expansion while for codimension higher than one, and for non-dissipative flows, the stress-energy tensor is characterized by 7 hydrodynamic and 3 elastic independent transport coefficients to second order in the expansion. Furthermore, the constraints imposed between the stress-energy tensor, the bending moment and the entropy current of the fluid by these extra non-dissipative contributions are fully captured by equilibrium partition functions. This analysis constrains the Young modulus which can be measured from gravity by elastically perturbing black branes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The purpose of this study is to delineate changes in aortic geometry and diameter due to dissection. BACKGROUND Aortic diameter is the major criterion for elective ascending aortic replacement for dilated ascending aortas to prevent aortic dissection. However, recommendations are made on the basis of clinical experience and observation of diameters of previously dissected aortas. METHODS Six tertiary centers on 2 continents reviewed their acute aortic dissection type A databases, which contained 1,821 patients. Included were all non-Marfan patients with nonbicuspid aortic valves who had undergone computed tomography angiography <2 years before and within 12 h after aortic dissection onset. Aortic geometry before and after dissection onset were compared. RESULTS Altogether, 63 patients were included (27 spontaneous and 36 retrograde dissections, median age 68 [57; 77] years; 54% were men). In all but 1 patient, maximum ascending aortic diameter was <55 mm before aortic dissection onset. The largest increase in diameter and volume induced by the dissection were observed in the ascending aorta (40.1 [36.6; 45.3] mm vs. 52.9 [46.1; 58.6] mm, +12.8 mm; p < 0.001; 124.0 [90.8; 162.5] cm(3) vs. 171.0 [147.0; 197.0] cm(3), +47 cm(3); p < 0.001). Mean aortic arch diameter increased from 39.8 (30.5; 42.6) mm to 46.4 (42.0; 51.6) mm (+6.6 mm; p < 0.001) and descending thoracic aorta diameter from 31.2 (27.0; 33.3) mm to 34.9 (30.9; 39.5) mm (+3.7 mm; p < 0.001). Changes in thoracic aorta geometry were similar for spontaneous and retrograde etiology. CONCLUSIONS Geometry of the thoracic aorta is affected by aortic dissection, leading to an increase in diameter that is most pronounced in the ascending aorta. Both spontaneous and retrograde dissection result in similar aortic geometry changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, synthesis and base-pairing properties of bicyclo[3.2.1]amide-(bca)DNA, a novel phosphodiester based DNA analogue, is reported. This analogue consists of a conformationally constrained backbone entity which emulates a B-DNA geometry, to which the nucleobases were attached via an extended, acyclic amide linker. Homobasic adenine-containing bca-decamers form duplexes with complementary oligonucleotides containing the bca-, the DNA the RNA and, surprisingly, also the L-RNA backbone. UV- and CD-spectroscopic investigations revealed the duplexes with D- or L-complement to be of similar stability and enantiomorphic in structure. Bca-oligonucleotides containing all four bases form strictly antiparallel, left-handed complementary duplexes with itself and complementary DNA but not with RNA. Base-mismatch discrimination is comparable to that of DNA while the overall thermal stabilities of bca-oligonucleotide duplexes are inferior relative to that of DNA or RNA. A detailed molecular modeling study of left- and right-handed bca-DNA containing duplexes showed only minor changes in the backbone structure and revealed a structural switch around the base-linker unit to be responsible for the generation of enantiomorphic duplex structures. The obtained data are discussed with respect to the structural and energetic role of the ribofuranose entities in DNA and RNA association