11 resultados para Elenius, Jaakko: Vakavin kasvoin iloisin mielin

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE We endeavored to develop an unruptured intracranial aneurysm (UIA) treatment score (UIATS) model that includes and quantifies key factors involved in clinical decision-making in the management of UIAs and to assess agreement for this model among specialists in UIA management and research. METHODS An international multidisciplinary (neurosurgery, neuroradiology, neurology, clinical epidemiology) group of 69 specialists was convened to develop and validate the UIATS model using a Delphi consensus. For internal (39 panel members involved in identification of relevant features) and external validation (30 independent external reviewers), 30 selected UIA cases were used to analyze agreement with UIATS management recommendations based on a 5-point Likert scale (5 indicating strong agreement). Interrater agreement (IRA) was assessed with standardized coefficients of dispersion (vr*) (vr* = 0 indicating excellent agreement and vr* = 1 indicating poor agreement). RESULTS The UIATS accounts for 29 key factors in UIA management. Agreement with UIATS (mean Likert scores) was 4.2 (95% confidence interval [CI] 4.1-4.3) per reviewer for both reviewer cohorts; agreement per case was 4.3 (95% CI 4.1-4.4) for panel members and 4.5 (95% CI 4.3-4.6) for external reviewers (p = 0.017). Mean Likert scores were 4.2 (95% CI 4.1-4.3) for interventional reviewers (n = 56) and 4.1 (95% CI 3.9-4.4) for noninterventional reviewers (n = 12) (p = 0.290). Overall IRA (vr*) for both cohorts was 0.026 (95% CI 0.019-0.033). CONCLUSIONS This novel UIA decision guidance study captures an excellent consensus among highly informed individuals on UIA management, irrespective of their underlying specialty. Clinicians can use the UIATS as a comprehensive mechanism for indicating how a large group of specialists might manage an individual patient with a UIA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce gradient-domain rendering for Monte Carlo image synthesis.While previous gradient-domain Metropolis Light Transport sought to distribute more samples in areas of high gradients, we show, in contrast, that estimating image gradients is also possible using standard (non-Metropolis) Monte Carlo algorithms, and furthermore, that even without changing the sample distribution, this often leads to significant error reduction. This broadens the applicability of gradient rendering considerably. To gain insight into the conditions under which gradient-domain sampling is beneficial, we present a frequency analysis that compares Monte Carlo sampling of gradients followed by Poisson reconstruction to traditional Monte Carlo sampling. Finally, we describe Gradient-Domain Path Tracing (G-PT), a relatively simple modification of the standard path tracing algorithm that can yield far superior results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monte Carlo integration is firmly established as the basis for most practical realistic image synthesis algorithms because of its flexibility and generality. However, the visual quality of rendered images often suffers from estimator variance, which appears as visually distracting noise. Adaptive sampling and reconstruction algorithms reduce variance by controlling the sampling density and aggregating samples in a reconstruction step, possibly over large image regions. In this paper we survey recent advances in this area. We distinguish between “a priori” methods that analyze the light transport equations and derive sampling rates and reconstruction filters from this analysis, and “a posteriori” methods that apply statistical techniques to sets of samples to drive the adaptive sampling and reconstruction process. They typically estimate the errors of several reconstruction filters, and select the best filter locally to minimize error. We discuss advantages and disadvantages of recent state-of-the-art techniques, and provide visual and quantitative comparisons. Some of these techniques are proving useful in real-world applications, and we aim to provide an overview for practitioners and researchers to assess these approaches. In addition, we discuss directions for potential further improvements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gradient-domain path tracing has recently been introduced as an efficient realistic image synthesis algorithm. This paper introduces a bidirectional gradient-domain sampler that outperforms traditional bidirectional path tracing often by a factor of two to five in terms of squared error at equal render time. It also improves over unidirectional gradient-domain path tracing in challenging visibility conditions, similarly as conventional bidirectional path tracing improves over its unidirectional counterpart. Our algorithm leverages a novel multiple importance sampling technique and an efficient implementation of a high-quality shift mapping suitable for bidirectional path tracing. We demonstrate the versatility of our approach in several challenging light transport scenarios.