45 resultados para DNA DOUBLE HELIX

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double stranded DNA hybrids containing up to four consecutive, face-to-face stacked porphyrins are described. Non-nucleosidic, 5,15-bisphenyl-substituted porphyrin building blocks were incorporated into complementary oligonucleotide strands. Upon hybridization multiple porphyrins are well accommodated inside the DNA scaffold without disturbing the overall B-DNA structure. The formation of double strands containing up to four free base porphyrins is enabled without compromising duplex stability. UV/vis, fluorescence, and CD spectroscopy demonstrate the formation of porphyrins H-aggregates inside the DNA double helix and provide evidence for the existence of strong excitonic coupling between interstrand stacked porphyrins. H-aggregation results in considerable fluorescence quenching. Most intense CD effects are observed in stacks containing four porphyrins. The findings demonstrate the value of DNA for the controlled formation of molecularly defined porphyrin aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel bicyclo-T nucleosides carrying a hydroxyl or a carboxymethyl substituent in C(6')-[alpha]-position were prepared and incorporated into oligodeoxynucleotides. During oligonucleotide deprotection the carboxymethyl substituent was converted into different amide substituents in a parallel way. Tm-measurements showed no dramatic differences in both, thermal affinity and mismatch discrimination, compared to unmodified oligonucleotides. The post-synthetic modification of the carboxymethyl substituent allows in principle for a parallel preparation of a library of oligonucleotides carrying diverse substituents at C(6'). In addition, functional groups can be placed into unique positions in a DNA double helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complementary Watson-Crick base-pairs, A:T and G:C, have long been recognized as pivotal to both the stability of the DNA double helix and replication/transcription. Recently, the replacement of the Watson-Crick base-pairs with other molecular entities has received considerable attention. In this tutorial review we highlight different approaches used to replace natural base-pairs and equip them with novel function. We also discuss the advantages that non-natural base-pairs convey with respect to practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic pi–pi stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic pi–pi stacking interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past years, in numerous studies the DNA double helix serves as a scaffold for the controlled arrangement of functional molecules, including a wide range of different chromophores. Other nucleic acid structures like the DNA three-way junction have been exploited for this purpose as well. Recently, the successful development of DNA-based light-harvesting antenna systems have been reported. Herein, we describe the use of the DNA three-way junction (3WJ) as a versatile scaffold for the modular construction of an artificial light harvesting complex (LHC). The LHC is based on a modular construction in which a phenanthrene antenna is located in one of the three stems and the acceptor is brought into proximity of the antenna through the annealing of the third strand. Phenanthrene excitation (320 nm) is followed by energy transfer to pyrene (resulting in exciplex emission), perylenediimide (quencher) or a cyanine dye (cyanine fluorescence).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The base modified nucleoside dBP, carrying a non-hydrogen-bonding non-shape complementary base was incorporated into oligonucleotides (Brotschi, C.; Haberli, A.; Leumann C.J. Angew. Chem. Int. Ed. 2001, 40, 3012-3014). This base was designed to coordinate transition metal ions into well defined positions within a DNA double helix. Melting experiments revealed that the stability of a dBP:dBP base couple in a DNA duplex is similar to a dG:dC base pair even in the absence of transition metal ions. In the presence of transition metal ions, melting experiments revealed a decrease in duplex stability which is on a similar order for all metal ions (Mn2+, Cu2+, Zn2+, Ni2+) tested

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic investigation of a series of triplex forming oligonucleotides (TFOs) containing alpha- and beta-thymidine, alpha- and beta-N7-hypoxanthine, and alpha- and beta- N7 and N9 aminopurine nucleosides, designed to bind to T-A inversion sites in DNA target sequences was performed. Data obtained from gel mobility assays indicate that t-A recognition in the antiparallel triple-helical binding motif is possible if the nucleoside alpha N9-aminopurine is used opposite to the inversion site in the TFO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA analogue tricyclo-DNA, built from conformationally rigid nucleoside analogues that were linked via tertiary phosphodiester functions, can efficiently be synthesized from the corresponding phosphoramidites by conventional solid-phase cyanoethyl phosphoramidite chemistry. 5'-End phosphorylated tricyclo-DNA sequences are chemically stable in aqueous, pH-neutral media at temperatures from 0 to 90 C. Tricyclo-DNA sequences resist enzymatic hydrolysis by the 3'-exonuclease snake venom phosphodiesterase. Homobasic adenine- and thymine-containing tricyclo-DNA octa- and nonamers are extraordinarily stable A-T base-pairing systems, not only in their own series but also with complementary DNA and RNA. Base mismatch formation is strongly destabilized. As in bicyclo-DNA, the tricyclo-DNA purine sequences preferentially accept a complementary strand on the Hoogsteen face of the base. A thermodynamic analysis reveals entropic benefits in the case of hetero-backbone duplex formation (tricyclo-DNA/DNA duplexes) and both an enthalpic and entropic benefit for duplex formation in the pure tricyclo-DNA series compared to natural DNA. Stability of tricyclo-DNA duplex formation depends more strongly on monovalent salt concentration compared to natural DNA. Homopyrimidine DNA sequences containing tricyclothymidine residues form triplexes with complementary double-stranded DNA. Triple-helix stability depends on the sequence composition and can be higher when compared to that of natural DNA. The use of one tricyclothymidine residue in the center of the self-complementary dodecamer duplex (d(CGCGAAT t CGCG), t = tricyclothymidine) strongly stabilizes its monomolecular hairpin loop structure relative to that of the corresponding pure DNA dodecamer ( T m = +20 C), indicating (tetra)loop-stabilizing properties of this rigid nucleoside analogue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA duplexes containing unnatural base-pair surrogates are attractive biomolecular nanomaterials with potentially beneficial photophysical or electronic properties. Herein we report the first X-ray structure of a duplex containing a phen-pair in the center of the double helix in a zipper like stacking arrangement.