162 resultados para Intestinal Parasites
Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes
Resumo:
The gastrointestinal tract is heavily colonized with commensal microbes with the concentration of bacteria increasing longitudinally down the length of the intestine. Bacteria are also spatially distributed transversely from the epithelial surface to the intestinal lumen with the inner mucus layer normally void of bacteria. Maintenance of this equilibrium is extremely important for human health and, as the dominant immunoglobulin at mucosal sites, IgA influences mutualism between the host and its normal microbiota. In this review we focus on the links between immune and microbial geography of the mammalian intestinal tract.
Resumo:
Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites.
Resumo:
Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.
Resumo:
Thymic stromal lymphopoietin (TSLP) is constitutively expressed in the intestine and is known to regulate inflammation in models of colitis. We show that steady-state TSLP expression requires intestinal bacteria and has an important role in limiting the expansion of colonic T helper type 17 (Th17) cells. Inappropriate expansion of the colonic Th17 cells occurred in response to an entirely benign intestinal microbiota, as determined following the colonization of germ-free C57BL/6 or TSLPR(-/-) mice with the altered Schaedler flora (ASF). TSLP-TSLPR (TSLP receptor) interactions also promoted the expansion of colonic Helios(-)Foxp3(+) regulatory T cells, necessary for the control of inappropriate Th17 responses following ASF bacterial colonization. In summary, these data reveal an important role for TSLP-TSLPR signaling in promoting steady-state mutualistic T-cell responses following intestinal bacterial colonization.
Resumo:
Feather pecking in laying hens is a serious behavioral problem that is often associated with feather eating. The intake of feathers may influence the gut microbiota and its metabolism. The aim of this study was to determine the effect of 2 different diets, with or without 5% ground feathers, on the gut microbiota and the resulting microbial fermentation products and to identify keratin-degrading bacteria in chicken digesta. One-day-old Lohmann-Selected Leghorn chicks were divided into 3 feeding groups: group A (control), B (5% ground feathers in the diet), and C, in which the control diet was fed until wk 12 and then switched to the 5% feather diet to study the effect of time of first feather ingestion. The gut microbiota was analyzed by cultivation and denaturing gradient gel electrophoresis of ileum and cecum digesta. Short-chain fatty acids, ammonia, and lactate concentrations were measured as microbial metabolites. The concentration of keratinolytic bacteria increased after feather ingestion in the ileum (P < 0.001) and cecum (P = 0.033). Bacterial species that hydrolyzed keratin were identified as Enterococcus faecium, Lactobacillus crispatus, Lactobacillus reuteri-like species (97% sequence homology), and Lactobacillus salivarius-like species (97% sequence homology). Molecular analysis of cecal DNA extracts showed that the feather diet lowered the bacterial diversity indicated by a reduced richness (P < 0.001) and shannon (P = 0.012) index. The pattern of microbial metabolites indicated some changes, especially in the cecum. This study showed that feather intake induced an adaptation of the intestinal microbiota in chickens. It remains unclear to what extent the changed metabolism of the microbiota reflects the feather intake and could have an effect on the behavior of the hens.
Resumo:
Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.
Resumo:
OBJECTIVE To analyze the transit time from various locations in the intestines of cows with cecal dilatation-dislocation (CDD), healthy control cows, and cows with left displacement of the abomasum (LDA). ANIMALS 15 cows with naturally occurring CDD (group 1), 14 healthy control cows (group 2), and 18 cows with LDA (group 3). PROCEDURES 5 electronic transmitters were encased in capsules and placed in the lumen of the ileum, cecum, proximal portion of the colon, and 2 locations in the spiral colon (colon 1 and colon 2) and used to measure the transit time (ie, time between placement in the lumen and excretion of the capsules from the rectum). Excretion time of the capsules from each intestinal segment was compared among groups. RESULTS Cows recovered well from surgery, except for 1 cow with relapse of CDD 4 days after surgery and 2 cows with incisional infection. High variability in capsule excretion times was observed for all examined intestinal segments in all groups. Significant differences were detected for the excretion time from the colon (greater in cows with CDD than in healthy control cows) and cecum (less in cows with LDA than in cows of the other 2 groups). CONCLUSIONS AND CLINICAL RELEVANCE The technique developed to measure excretion time of capsules from bovine intestines was safe and reliable; however, the large variability observed for all intestinal segments and all groups would appear to be a limitation for its use in assessment of intestinal transit time of cattle in future studies.