107 resultados para SOLUTE CONCENTRATIONS
Resumo:
Abstract BACKGROUND: 3-Bromotyrosine (3-BrY) is a stable product of eosinophil peroxidase and may serve as a marker of eosinophil activation. A gas chromatography/mass spectrometry method to measure 3-BrY concentrations in serum from dogs has recently been established and analytically validated. The aims of this study were to determine the stability of 3-BrY in serum, to determine the association between peripheral eosinophil counts and the presence of an eosinophilic infiltrate in the gastrointestinal tract, and to compare serum 3-BrY concentrations in healthy dogs (n = 52) and dogs with eosinophilic gastroenteritis (EGE; n = 27), lymphocytic-plasmacytic enteritis (LPE; n = 25), exocrine pancreatic insufficiency (EPI; n = 26), or pancreatitis (n = 27). RESULTS: Serum 3-BrY concentrations were stable for up to 8, 30, and 180 days at 4°C, -20°C, and -80°C, respectively. There was no significant association between peripheral eosinophil count and the presence of eosinophils in the GI tissues (P = 0.1733). Serum 3-BrY concentrations were significantly higher in dogs with EGE (median [range] = 5.04 [≤0.63-26.26] μmol/L), LPE (median [range] = 3.60 [≤0.63-15.67] μmol/L), and pancreatitis (median [range] = 1.49 [≤0.63-4.46] μmol/L) than in healthy control dogs (median [range] = ≤0.63 [≤0.63-1.79] μmol/L; P < 0.0001), whereas concentrations in dogs with EPI (median [range] = 0.73 [≤0.63-4.59] μmol/L) were not different compared to healthy control dogs. CONCLUSIONS: The present study revealed that 3-BrY concentrations were stable in serum when refrigerated and frozen. No relationship between peripheral eosinophil count and the presence of eosinophils infiltration in the GI tissues was found in this study. In addition, serum 3-BrY concentrations were increased in dogs with EGE, but also in dogs with LPE and pancreatitis. Further studies are needed to determine whether measurement of 3-BrY concentrations in serum may be useful to assess patients with suspected or confirmed EGE or LPE.
Resumo:
Lawsonia intracellularis is the causative agent of porcine proliferative enteropathy. The clinical presentation can be acute (i.e. proliferative hemorrhagic enteropathy, PHE), chronic (i.e. porcine intestinal adenomatosis, PIA) or subclinical. In humans with chronic enteropathies, low serum folate (vitamin B(9)) and cobalamin (vitamin B(12)) concentrations have been associated with increased serum concentrations of homocysteine and methylmalonic acid (MMA), which reflect the availability of both vitamins at the cellular level. The aim of this study was to evaluate serum folate, cobalamin, homocysteine and MMA concentrations in serum samples from pigs with PHE, PIA or subclinical L. intracellularis infection, and in negative controls. Serum folate, cobalamin, homocysteine and MMA concentrations differed significantly among pigs in the PHE, PIA, subclinical and negative control groups. Serum folate concentrations in the PHE and PIA groups were lower than in the subclinical and negative control groups, while serum cobalamin concentrations were lower in the PIA group than in other groups. Serum concentrations of homocysteine were higher in the PHE, PIA and subclinical groups than in the negative control group. Serum concentrations of MMA were higher in the subclinical and PIA groups than in the control group. These data suggest that pigs infected with L. intracellularis have altered serum cobalamin, folate, homocysteine and MMA concentrations.
Resumo:
Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.
Resumo:
The abundance of atmospheric oxygen and its evolution through Earth's history is a highly debated topic. The earliest change of the Mo concentration and isotope composition of marine sediments are interpreted to be linked to the onset of the accumulation of free O2 in Earth's atmosphere. The O2 concentration needed to dissolve significant amounts of Mo in water is not yet quantified, however. We present laboratory experiments on pulverized and surface-cleaned molybdenite (MoS2) and a hydrothermal breccia enriched in Mo-bearing sulphides using a glove box setup. Duration of an experiment was 14 days, and first signs of oxidation and subsequent dissolution of Mo compounds start to occur above an atmospheric oxygen concentration of 72 ± 20 ppmv (i.e., 2.6 to 4.6 × 10−4 present atmospheric level (PAL)). This experimentally determined value coincides with published model calculations supporting atmospheric O2 concentrations between 1 × 10−5 to 3 × 10−4 PAL prior to the Great Oxidation Event and sets an upper limit to the molecular oxygen needed to trigger Mo accumulation and Mo isotope variations recorded in sediments. In combination with the published Mo isotope composition of the rock record, this result implies an atmospheric oxygen concentration prior to 2.76 Ga of below 72 ± 20 ppmv.
Resumo:
BACKGROUND Ribavirin (RBV) is an essential component of most current hepatitis C (HCV) treatment regimens and still standard of care in the combination with pegylated interferon (pegIFN) to treat chronic HCV in resource limited settings. Study results in HIV/HCV-coinfected patients are contradicting as to whether RBV concentration correlates with sustained virological response (SVR). METHODS We included 262 HCV treatment naïve HIV/HCV-coinfected Swiss HIV Cohort Study (SHCS) participants treated with RBV and pegIFN between 01.01.2001-01.01.2010, 134 with HCV genotype (GT) 1/4, and 128 with GT 2/3 infections. RBV levels were measured retrospectively in stored plasma samples obtained between HCV treatment week 4 and end of therapy. Uni- and multivariable logistic regression analyses were used to evaluate the association between RBV concentration and SVR in GT 1/4 and GT 2/3 infections. The analyses were repeated stratified by treatment phase (week 4-12, 13-24, >24) and IL28B genotype (CC versus CT/TT). RESULTS SVR rates were 35.1% in GT 1/4 and 70.3% in GT 2/3 infections. Overall, median RBV concentration was 2.0 mg/L in GT 1/4, and 1.9 mg/L in GT 2/3, and did not change significantly across treatment phases. Patients with SVR had similar RBV concentrations compared to patients without SVR in both HCV genotype groups. SVR was not associated with RBV levels ≥2.0 mg/L (GT 1/4, OR 1.19 [0.5-2.86]; GT 2/3, 1.94 [0.78-4.80]) and ≥2.5 mg/L (GT 1/4, 1.56 [0.64-3.84]; GT 2/3 2.72 [0.85-8.73]), regardless of treatment phase, and IL28B genotype. CONCLUSION In HIV/HCV-coinfected patients treated with pegIFN/RBV, therapeutic drug monitoring of RBV concentrations does not enhance the chance of HCV cure, regardless of HCV genotype, treatment phase and IL28B genotype.
Resumo:
Methane (CH4) and carbon dioxide emissions from lakes are relevant for assessing the greenhouse gas output of wetlands. However, only few standardized datasets describe concentrations of these gases in lakes across different geographical regions. We studied concentrations and stable carbon isotopic composition (δ13C) of CH4 and dissolved inorganic carbon (DIC) in 32 small lakes from Finland, Sweden, Germany, the Netherlands, and Switzerland in late summer. Higher concentrations and δ13C values of DIC were observed in calcareous lakes than in lakes on non-calcareous areas. In stratified lakes, δ13C values of DIC were generally lower in the hypolimnion due to the degradation of organic matter (OM). Unexpectedly, increased δ13C values of DIC were registered above the sediment in several lakes. This may reflect carbonate dissolution in calcareous lakes or methanogenesis in deepwater layers or in the sediments. Surface water CH4 concentrations were generally higher in western and central European lakes than in Fennoscandian lakes, possibly due to higher CH4 production in the littoral sediments and lateral transport, whereas CH4 concentrations in the hypolimnion did not differ significantly between the regions. The δ13C values of CH4 in the sediment suggest that δ13C values of biogenic CH4 are not necessarily linked to δ13C values of sedimentary OM but may be strongly influenced by OM quality and methanogenic pathway. Our study suggests that CH4 and DIC cycling in small lakes differ between geographical regions and that this should be taken into account when regional studies on greenhouse gas emissions are upscaled to inter-regional scales.
Resumo:
PURPOSE Contamination with bacteria and/or fungi is a serious complication in organ-cultured corneas. Hence, antibiotic and antifungal agents are added to the culture medium. The concentration of different antimicrobial and antifungal additives to the media over time has so far not been investigated in detail and is the aim of this study. METHODS Nine human fresh corneoscleral discs were stored in corneal culture medium consisting of 2% fetal bovine serum and minimal essential medium. In addition, the culture medium contained 1200 μg/mL penicillin G, 25 μg/mL amphotericin B, 120 μg/mL streptomycin, and 100 μg/mL voriconazole. The concentration of amphotericin B used was 10 times higher than in clinical routine to facilitate its detection. The cultures were kept at 37°C for 28 days. At days 0, 7, 14, 21, and 28, samples of the culture medium were harvested for analysis of antimicrobial concentrations by liquid chromatography and electrospray ionization tandem mass spectrometry. RESULTS During corneal storage, the concentration of all antibiotics and antifungal agents declined significantly. By day 28, penicillin G was reduced to 14% of the original concentration. Amphotericin B and streptomycin retained approximately 60% of the original concentration to the end of the experiment and voriconazole maintained stable concentrations after an initial decline to approximately 80% at 7 days. CONCLUSIONS Throughout the entire storage period, the concentrations of penicillin G, streptomycin, and voriconazole exceeded the minimum inhibitory concentrations of all common contaminants, obviating the need for a change of the medium for antimicrobial reasons. Based on the minimum inhibitory concentrations and our findings, the initial concentration of amphotericin B should be raised to 5 μg/mL.
Resumo:
OBJECTIVE: To evaluate serum concentrations of biochemical markers and survival time in dogs with protein-losing enteropathy (PLE). DESIGN: Prospective study. ANIMALS: 29 dogs with PLE and 18 dogs with food-responsive diarrhea (FRD). PROCEDURES: Data regarding serum concentrations of various biochemical markers at the initial evaluation were available for 18 of the 29 dogs with PLE and compared with findings for dogs with FRD. Correlations between biochemical marker concentrations and survival time (interval between time of initial evaluation and death or euthanasia) for dogs with PLE were evaluated. RESULTS: Serum C-reactive protein concentration was high in 13 of 18 dogs with PLE and in 2 of 18 dogs with FRD. Serum concentration of canine pancreatic lipase immunoreactivity was high in 3 dogs with PLE but within the reference interval in all dogs with FRD. Serum α1-proteinase inhibitor concentration was less than the lower reference limit in 9 dogs with PLE and 1 dog with FRD. Compared with findings in dogs with FRD, values of those 3 variables in dogs with PLE were significantly different. Serum calprotectin (measured by radioimmunoassay and ELISA) and S100A12 concentrations were high but did not differ significantly between groups. Seventeen of the 29 dogs with PLE were euthanized owing to this disease; median survival time was 67 days (range, 2 to 2,551 days). CONCLUSIONS AND CLINICAL RELEVANCE: Serum C-reactive protein, canine pancreatic lipase immunoreactivity, and α1-proteinase inhibitor concentrations differed significantly between dogs with PLE and FRD. Most initial biomarker concentrations were not predictive of survival time in dogs with PLE.
Resumo:
In spite of the environmental relevance of 129I, there is still a scarcity of data about its presence in the different natural compartments. In this work, results are presented on the concentration of 129I in rainwater samples taken in Sevilla (southwestern Spain) and in a sediment core taken near the Ringhals coast (Sweden). Typical concentrations of 108 and 109129I at/l are found in rainwater samples, similar to other values in literature. In the case of the sediment core, our results clearly show the impact of anthropogenic sources, with concentrations in the order of 1013129I at./kg and isotopic ratios 129I/127I in the order of 10−8 in the higher layers.
Resumo:
Solute carrier (SLC) membrane transport proteins control essential physiological functions, including nutrient uptake, ion transport, and waste removal. SLCs interact with several important drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet, compared to other gene families of similar stature, SLCs are relatively understudied. The time is right for a systematic attack on SLC structure, specificity, and function, taking into account kinship and expression, as well as the dependencies that arise from the common metabolic space.
Resumo:
It has recently been reported in this journal that local fat depots produce a sizable frequency-dependent signal attenuation in magnetic resonance spectroscopy (MRS) of the brain. If of a general nature, this effect would question the use of internal reference signals for quantification of MRS and the quantitative use of MRS as a whole. Here, it was attempted to verify this effect and pinpoint the potential causes by acquiring data with various acquisition settings, including two field strengths, two MR scanners from different vendors, different water suppression sequences, RF coils, localization sequences, echo times, and lipid/metabolite phantoms. With all settings tested, the reported effect could not be reproduced, and it is concluded that water referencing and quantitative MRS per se remain valid tools under common acquisition conditions.