95 resultados para GENOMIC HYBRIDIZATION
Resumo:
The patterns of population genetic diversity depend to a large extent on past demographic history. Most human populations are known to have gone recently through a series of range expansions within and out of Africa, but these spatial expansions are rarely taken into account when interpreting observed genomic diversity, possibly because they are difficult to model. Here we review available evidence in favour of range expansions out of Africa, and we discuss several of their consequences on neutral and selected diversity, including some recent observations on an excess of rare neutral and selected variants in large samples. We further show that in spatially subdivided populations, the sampling strategy can severely impact the resulting genetic diversity and be confounded by past demography. We conclude that ignoring the spatial structure of human population can lead to some misinterpretations of extant genetic diversity.
Resumo:
Several lines of genetic, archeological and paleontological evidence suggest that anatomically modern humans (Homo sapiens) colonized the world in the last 60,000 years by a series of migrations originating from Africa (e.g. Liu et al., 2006; Handley et al., 2007; Prugnolle, Manica, and Balloux, 2005; Ramachandran et al. 2005; Li et al. 2008; Deshpande et al. 2009; Mellars, 2006a, b; Lahr and Foley, 1998; Gravel et al., 2011; Rasmussen et al., 2011). With the progress of ancient DNA analysis, it has been shown that archaic humans hybridized with modern humans outside Africa. Recent direct analyses of fossil nuclear DNA have revealed that 1–4 percent of the genome of Eurasian has been likely introgressed by Neanderthal genes (Green et al., 2010; Reich et al., 2010; Vernot and Akey, 2014; Sankararaman et al., 2014; Prufer et al., 2014; Wall et al., 2013), with Papua New Guineans and Australians showing even larger levels of admixture with Denisovans (Reich et al., 2010; Skoglund and Jakobsson, 2011; Reich et al., 2011; Rasmussen et al., 2011). It thus appears that the past history of our species has been more complex than previously anticipated (Alves et al., 2012), and that modern humans hybridized several times with local hominins during their expansion out of Africa, but the exact mode, time and location of these hybridizations remain to be clarifi ed (Ibid.; Wall et al., 2013). In this context, we review here a general model of admixture during range expansion, which lead to some predictions about expected patterns of introgression that are relevant to modern human evolution.
Resumo:
Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR) conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.
Resumo:
Selection on naturally occurring hybrid individuals is a key component of speciation theory, but few studies examine the functional basis of hybrid performance. We examine the functional consequences of hybridization in nature, using the freshwater sunfishes (Centrarchidae), where natural hybrids have been studied for more than a century and a half. We examined bluegill (Lepomis macrochirus), green sunfish (Lepomis cyanellus), and their naturally occurring hybrid, using prey-capture kinematics and morphology to parameterize suction-feeding simulations on divergent parental resources. Hybrid individuals exhibited kinematics intermediate between those of the two parental species. However, performance assays indicated that hybrids display performance most similar to the worse-performing species for a given parental resource. Our results show that intermediate hybrid phenotypes can be impaired by a less-than-intermediate performance and hence suffer a larger loss in fitness than could be inferred from morphology alone.
Resumo:
As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms [1]. Herein included is the prominent example of gene silencing caused by micro RNAs (miRNAs) and small interfering RNAs (siRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of RNAs among the well-studied ncRNAs that target the ribosome itself [2,3]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. Recent studies show the presence of small regulatory RNAs (sRNAs) in archaea which are involved in many biological processes including stress response and metabolic regulation [4]. To date the biological function and the targets of these archaeal sRNAs are only described for a few examples. There are reports of sRNAs binding to the 5’ as well as to the 3’ of mRNAs [5,6]. In addition to these findings, a tRNA derived fragment (tRF) of Valine tRNA was found in a genomic screen of RNAs associated with the ribosome in H. volcanii in our laboratory [3]. This Valine tRF seems to be processed in a stress-dependent manner and showed in vitro binding to the ribosome and inhibited in vitro translation. These results showed that Valine tRF is capable to regulate translation in H. volcanii by targeting the ribosome. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression patterns in response to stress conditions. To investigate the biological relevance of some of the ribosome-associated ncRNA candidates, knock-out and phenotypic characterization studies are done. The genomic knock out of a hypothetical ORF (198nt), where one putative rancRNA candidate (46nt) named IG33 was detected in the library at the beginning of the ORF, showed interesting growth phenotype under specific stress conditions. Furthermore a strain with an introduced start to stop codon mutation in this hypothetical ORF still shows the same phenotype indicating that rather the missing protein than the missing sRNA causes this growth phenotype.
Resumo:
High-throughput molecular profiling approaches have emerged as precious research tools in the field of head and neck translational oncology. Such approaches have identified and/or confirmed the role of several genes or pathways in the acquisition/maintenance of an invasive phenotype and the execution of cellular programs related to cell invasion. Recently published new-generation sequencing studies in head and neck squamous cell carcinoma (HNSCC) have unveiled prominent roles in carcinogenesis and cell invasion of mutations involving NOTCH1 and PI3K-patwhay components. Gene-expression profiling studies combined with systems biology approaches have allowed identifying and gaining further mechanistic understanding into pathways commonly enriched in invasive HNSCC. These pathways include antigen-presenting and leucocyte adhesion molecules, as well as genes involved in cell-extracellular matrix interactions. Here we review the major insights into invasiveness in head and neck cancer provided by high-throughput molecular profiling approaches.
Resumo:
Herein we provide a detailed molecular analysis of the spatial heterogeneity of clinically localized, multifocal prostate cancer to delineate new oncogenes or tumor suppressors. We initially determined the copy number aberration (CNA) profiles of 74 patients with index tumors of Gleason score 7. Of these, 5 patients were subjected to whole-genome sequencing using DNA quantities achievable in diagnostic biopsies, with detailed spatial sampling of 23 distinct tumor regions to assess intraprostatic heterogeneity in focal genomics. Multifocal tumors are highly heterogeneous for single-nucleotide variants (SNVs), CNAs and genomic rearrangements. We identified and validated a new recurrent amplification of MYCL, which is associated with TP53 deletion and unique profiles of DNA damage and transcriptional dysregulation. Moreover, we demonstrate divergent tumor evolution in multifocal cancer and, in some cases, tumors of independent clonal origin. These data represent the first systematic relation of intraprostatic genomic heterogeneity to predicted clinical outcome and inform the development of novel biomarkers that reflect individual prognosis.
Resumo:
PURPOSE The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics. METHODS We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers. RESULTS A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%. CONCLUSIONS The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.Genet Med advance online publication 14 January 2016Genetics in Medicine (2016); doi:10.1038/gim.2015.167.
Resumo:
The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3' processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but are many megabases apart, whereas the active U7 gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed.
Resumo:
Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus.
Resumo:
Mortality owing to liver cancer has increased in the past 20 years, and the latest estimates indicate that the global health burden of this disease will continue to grow. Most patients with hepatocellular carcinoma (HCC) are still diagnosed at intermediate or advanced disease stages, where curative approaches are often not feasible. Among the treatment options available, the molecular targeted agent sorafenib is able to significantly increase overall survival in these patients. Thereafter, up to seven large, randomized phase III clinical trials investigating other molecular therapies in the first-line and second-line settings have failed to improve on the results observed with this agent. Potential reasons for this include intertumour heterogeneity, issues with trial design and a lack of predictive biomarkers of response. During the past 5 years, substantial advances in our knowledge of the human genome have provided a comprehensive picture of commonly mutated genes in patients with HCC. This knowledge has not yet influenced clinical decision-making or current clinical practice guidelines. In this Review the authors summarize the molecular concepts of progression, discuss the potential reasons for clinical trial failure and propose new concepts of drug development, which might lead to clinical implementation of emerging targeted agents.