76 resultados para Generalized Resolvent Operator
Resumo:
Acute generalized exanthematous pustulosis (AGEP) and generalized pustular psoriasis (GPP) are rare pustular skin disorders with systemic involvement. IL-17A/F is a proinflammatory cytokine involved in various neutrophilic inflammatory disorders. Here we show that IL-17A/F is highly expressed by innate immune cells such as neutrophils and mast cells in both AGEP and GPP.
Resumo:
We calculate the O(αs) corrections to the double differential decay width dΓ77/(ds1ds2) for the process B¯→Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as si=(pb−qi)2/m2b, where pb, q1, q2 are the momenta of the b quark and two photons. We introduce a nonzero mass ms for the strange quark to regulate configurations where the gluon or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms, while discarding terms which go to zero in the limit ms→0. When combining virtual and bremsstrahlung corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon emission could be treated using fragmentation functions. In a related work we find that similar results can be obtained when simply interpreting ms appearing in the final result as a constituent mass. We do so in the present paper and vary ms between 400 and 600 MeV in the numerics. This work extends a previous paper by us, where only the leading power terms with respect to the (normalized) hadronic mass s3=(pb−q1−q2)2/m2b were taken into account in the underlying triple differential decay width dΓ77/(ds1ds2ds3).
Resumo:
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.
Resumo:
We present a general method for inserting proofs in Frege systems for classical logic that produces systems that can internalize their own proofs.
Resumo:
We show that the non-embedded eigenvalues of the Dirac operator on the real line with complex mass and non-Hermitian potential V lie in the disjoint union of two disks, provided that the L1-norm of V is bounded from above by the speed of light times the reduced Planck constant. The result is sharp; moreover, the analogous sharp result for the Schrödinger operator, originally proved by Abramov, Aslanyan and Davies, emerges in the nonrelativistic limit. For massless Dirac operators, the condition on V implies the absence of non-real eigenvalues. Our results are further generalized to potentials with slower decay at infinity. As an application, we determine bounds on resonances and embedded eigenvalues of Dirac operators with Hermitian dilation-analytic potentials.
Resumo:
We establish the convergence of pseudospectra in Hausdorff distance for closed operators acting in different Hilbert spaces and converging in the generalised norm resolvent sense. As an assumption, we exclude the case that the limiting operator has constant resolvent norm on an open set. We extend the class of operators for which it is known that the latter cannot happen by showing that if the resolvent norm is constant on an open set, then this constant is the global minimum. We present a number of examples exhibiting various resolvent norm behaviours and illustrating the applicability of this characterisation compared to known results.
Resumo:
Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixingratios have been operated since the mid-2000’s in Siberia. For the first time in a single work, we assimilate 1 year of these in situ observations in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the mesoscale in the Siberian lowlands for the year 2010. To do so, we first inquire about the way the inversion uses the observations and the way the fluxes are constrained by the observation sites. As atmospheric inver- sions at the mesoscale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversion systems. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution quasi-continuous signal is representative of very local emission patterns difficult to analyse with a mesoscale system. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites than the ones currently in operation are then necessary to constrain the whole Siberian lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. Finally, the tolerance intervals for posterior methane fluxes are of roughly 20 % (resp. 50 %) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70 % of Siberian lowlands emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian lowlands, we find a regional methane budget of 5–28 TgCH4 for the year 2010, i.e. 1–5 % of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are tentatively used for the evaluation of the inversion results, but they exhibit only a marginal signal from the fluxes within the region of interest.
Resumo:
We calculate the anomalous dimensions of operators with large global charge J in certain strongly coupled conformal field theories in three dimensions, such as the O(2) model and the supersymmetric fixed point with a single chiral superfield and a W = Φ3 superpotential. Working in a 1/J expansion, we find that the large-J sector of both examples is controlled by a conformally invariant effective Lagrangian for a Goldstone boson of the global symmetry. For both these theories, we find that the lowest state with charge J is always a scalar operator whose dimension ΔJ satisfies the sum rule J2ΔJ−(J22+J4+316)ΔJ−1−(J22+J4+316)ΔJ+1=0.04067 up to corrections that vanish at large J . The spectrum of low-lying excited states is also calculable explcitly: for example, the second-lowest primary operator has spin two and dimension ΔJ+3√. In the supersymmetric case, the dimensions of all half-integer-spin operators lie above the dimensions of the integer-spin operators by a gap of order J+12. The propagation speeds of the Goldstone waves and heavy fermions are 12√ and ±12 times the speed of light, respectively. These values, including the negative one, are necessary for the consistent realization of the superconformal symmetry at large J.
Resumo:
We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac Hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the generalized Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in the foreseeable future.
Resumo:
BACKGROUND: Despite long-standing calls to disseminate evidence-based treatments for generalized anxiety (GAD), modest progress has been made in the study of how such treatments should be implemented. The primary objective of this study was to test three competing strategies on how to implement a cognitive behavioral treatment (CBT) for out-patients with GAD (i.e., comparison of one compensation vs. two capitalization models). METHODS: For our three-arm, single-blinded, randomized controlled trial (implementation of CBT for GAD [IMPLEMENT]), we recruited adults with GAD using advertisements in high-circulation newspapers to participate in a 14-session cognitive behavioral treatment (Mastery of your Anxiety and Worry, MAW-packet). We randomly assigned eligible patients using a full randomization procedure (1:1:1) to three different conditions of implementation: adherence priming (compensation model), which had a systematized focus on patients' individual GAD symptoms and how to compensate for these symptoms within the MAW-packet, and resource priming and supportive resource priming (capitalization model), which had systematized focuses on patients' strengths and abilities and how these strengths can be capitalized within the same packet. In the intention-to-treat population an outcome composite of primary and secondary symptoms-related self-report questionnaires was analyzed based on a hierarchical linear growth model from intake to 6-month follow-up assessment. This trial is registered at ClinicalTrials.gov (identifier: NCT02039193) and is closed to new participants. FINDINGS: From June 2012 to Nov. 2014, from 411 participants that were screened, 57 eligible participants were recruited and randomly assigned to three conditions. Forty-nine patients (86%) provided outcome data at post-assessment (14% dropout rate). All three conditions showed a highly significant reduction of symptoms over time. However, compared with the adherence priming condition, both resource priming conditions indicated faster symptom reduction. The observer ratings of a sub-sample of recorded videos (n = 100) showed that the therapists in the resource priming conditions conducted more strength-oriented interventions in comparison with the adherence priming condition. No patients died or attempted suicide. INTERPRETATION: To our knowledge, this is the first trial that focuses on capitalization and compensation models during the implementation of one prescriptive treatment packet for GAD. We have shown that GAD related symptoms were significantly faster reduced by the resource priming conditions, although the limitations of our study included a well-educated population. If replicated, our results suggest that therapists who implement a mental health treatment for GAD might profit from a systematized focus on capitalization models. FUNDING: Swiss Science National Foundation (SNSF-Nr. PZ00P1_136937/1) awarded to CF. KEYWORDS: Cognitive behavioral therapy; Evidence-based treatment; Implementation strategies; Randomized controlled trial