Remarks on the convergence of pseudospectra


Autoria(s): Bögli, Sabine; Siegl, Petr
Data(s)

2014

Resumo

We establish the convergence of pseudospectra in Hausdorff distance for closed operators acting in different Hilbert spaces and converging in the generalised norm resolvent sense. As an assumption, we exclude the case that the limiting operator has constant resolvent norm on an open set. We extend the class of operators for which it is known that the latter cannot happen by showing that if the resolvent norm is constant on an open set, then this constant is the global minimum. We present a number of examples exhibiting various resolvent norm behaviours and illustrating the applicability of this characterisation compared to known results.

Formato

application/pdf

Identificador

http://boris.unibe.ch/66711/1/art%253A10.1007%252Fs00020-014-2178-1.pdf

Bögli, Sabine; Siegl, Petr (2014). Remarks on the convergence of pseudospectra. Integral equations and operator theory, 80(3), pp. 303-321. Birkhäuser 10.1007/s00020-014-2178-1 <http://dx.doi.org/10.1007/s00020-014-2178-1>

doi:10.7892/boris.66711

info:doi:10.1007/s00020-014-2178-1

urn:issn:0378-620X

Idioma(s)

eng

Publicador

Birkhäuser

Relação

http://boris.unibe.ch/66711/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Bögli, Sabine; Siegl, Petr (2014). Remarks on the convergence of pseudospectra. Integral equations and operator theory, 80(3), pp. 303-321. Birkhäuser 10.1007/s00020-014-2178-1 <http://dx.doi.org/10.1007/s00020-014-2178-1>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed