76 resultados para Basal cell nevus syndrome
Resumo:
X-linked inhibitor of apoptosis protein (XIAP) has been identified as a potent regulator of innate immune responses, and loss-of-function mutations in XIAP cause the development of the X-linked lymphoproliferative syndrome type 2 (XLP-2) in humans. Using gene-targeted mice, we show that loss of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3 but proceeds independently of caspase-1/caspase-11 or caspase-8 function. Loss of XIAP results in aberrantly elevated ubiquitylation of RIP1 outside of TNFR complex I. Virally infected Xiap−/− mice present with symptoms reminiscent of XLP-2. Our data show that XIAP controls RIP3-dependent cell death and IL-1β secretion in response to TNF, which might contribute to hyperinflammation in patients with XLP-2.
Resumo:
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Resumo:
Close similarities of various physiological parameters makes the pig one of the preferred animal models for the study of human diseases, especially those involving the cardiovascular system. Unfortunately, the use of pig models to study diseases such as viral hemorrhagic fevers and endotoxic shock syndrome have been hampered by the lack of the necessary immunological tools to measure important immunoregulatory cytokines such as tumor necrosis factor (TNF). Here we describe a TNF-bioassay which is based on the porcine kidney cell line PK(15). Compared to the widely used murine fibroblastoid cell line L929, the PK(15) cell line displays a 100-1000-fold higher sensitivity for porcine TNF-alpha, a higher sensitivity for human TNF-alpha, and a slightly lower sensitivity for murine TNF-alpha. Using a PK(15) bioassay we can detect recombinant TNF-alpha as well as cytotoxic activity in the supernatants of lipopolysaccharide (LPS)-activated porcine monocytes at high dilutions. This suggests that the sensitivity of the test should permit the detection of TNF in biological specimens such as pig serum.
Resumo:
BCL2 is a target of somatic hypermutation in t(14;18) positive and also in a small fraction of t(14;18) negative diffuse large B-cell lymphoma (DLBCL), suggesting an aberrant role of somatic hypermutation (ASHM). To elucidate the prevalence of BCL2 mutations in lymphomas other than DLBCL, we Sanger-sequenced the hypermutable region of the BCL2 gene in a panel of 69 mature B-cell lymphomas, including Richter's syndrome DLBCL, marginal-zone lymphomas, post-transplant lymphoproliferative disorders, HIV-associated and common-variable immunodeficiency-associated DLBCL, all known to harbour ASHM-dependent mutations in other genes, as well as 16 t(14,18) negative and 21 t(14;18) positive follicular lymphomas (FLs). We also investigated the pattern of BCL2 mutations in longitudinal samples from 10 FL patients relapsing to FL or transforming to DLBCL (tFL). By direct sequencing, we found clonally represented BCL2 mutations in 2/16 (13%) of t(14;18) negative FLs, 2/16 (13%) HIV-DLBCLs, 1/9 (11%) of Richter's syndrome DLBCL, 1/17 (6%) of post-transplant lymphoproliferative disorders and 1/2 (50%) common-variable immunodeficiency-associated DLBCL. The proportion of mutated cases was significantly lower than in FLs carrying the t(14;18) translocation (15/21, 71%). However, the absence of t(14;18) by FISH or PCR and the molecular features of the mutations strongly suggest that BCL2 represents an additional target of ASHM in these entities. Analysis of the BCL2 mutation pattern in clonally related FL/FL and FL/tFL samples revealed two distinct scenarios of genomic evolution: (i) direct evolution from the antecedent FL clone, with few novel clonal mutations acquired by the tFL major clone, and (ii) evolution from a common mutated long-lived progenitor cell, which subsequently acquired distinct mutations in the FL and in the relapsed or transformed counterpart. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.
Resumo:
BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.
Resumo:
MicroRNA miR-199a-5p impairs tight junction formation leading to increased urothelial permeability in bladder pain syndrome. Now using transcriptome analysis in urothelial TEU-2 cells we implicate it in the regulation of cell cycle, cytoskeleton remodeling, TGF and Wnt signaling pathways. MiR-199a-5p is highly expressed in the smooth muscle layer of the bladder and we altered its levels in bladder smooth muscle cells (SMC) to validate the pathway analysis. Inhibition of miR-199a-5p with antimiR increased SMC proliferation, reduced cell size and up-regulated miR-199a-5p targets, including Wnt2. Overexpression of Wnt2 protein or treating SMCs with recombinant Wnt2 closely mimicked the miR-199a-5p inhibition, whereas down-regulation of Wnt2 in antimiR-expressing SMCs with shRNA restored cell phenotype and proliferation rates. Overexpression of miR-199a-5p in the bladder SMCs significantly increased cell size and up-regulated SM22, SM alpha-actin and SM myosin heavy chain mRNA and protein levels. These changes, as well as increased expression of ACTG2, TGFB1I1, and CDKN1A were mediated by up-regulation of smooth muscle-specific transcriptional activator myocardin at mRNA and protein levels. Myocardin-related transcription factor (MRTF-A) downstream targets Id3 and MYL9 were also induced. Up-regulation of myocardin was accompanied by down-regulation of Wnt-dependent inhibitory Kruppel-like transcription factor 4 (KLF4) in miR-199a-5p overexpressing cells. In contrast, KLF4 was induced in antimiR-expressing cells following the activation of Wnt2 signaling, leading to repression of myocardin-dependent genes. MiR-199a-5p plays a critical role in the Wnt2-mediated regulation of proliferative and differentiation processes in the smooth muscle and may behave as a key modulator of smooth muscle hypertrophy, relevant for organ remodeling.
Resumo:
INTRODUCTION Myasthenia gravis is an autoimmune disease characterized by fluctuating muscle weakness. It is often associated with other autoimmune disorders, such as thyroid disease, rheumatoid arthritis, systemic lupus erythematosus, and antiphospholipid syndrome. Many aspects of autoimmune diseases are not completely understood, particularly when they occur in association, which suggests a common pathogenetic mechanism. CASE PRESENTATION We report a case of a 42-year-old Caucasian woman with antiphospholipid syndrome, in whom myasthenia gravis developed years later. She tested negative for both antibodies against the acetylcholine receptor and against muscle-specific receptor tyrosine-kinase, but had typical decremental responses at the repetitive nerve stimulation testing, so that a generalized myasthenia gravis was diagnosed. Her thromboplastin time and activated partial thromboplastin time were high, anticardiolipin and anti-β2 glycoprotein-I antibodies were slightly elevated, as a manifestation of the antiphospholipid syndrome. She had a good clinical response when treated with a combination of pyridostigmine, prednisone and azathioprine. CONCLUSIONS Many patients with myasthenia gravis test positive for a large variety of auto-antibodies, testifying of an immune dysregulation, and some display mild T-cell lymphopenia associated with hypergammaglobulinemia and B-cell hyper-reactivity. Both of these mechanisms could explain the occurrence of another autoimmune condition, such as antiphospholipid syndrome, but further studies are necessary to shed light on this matter.Clinicians should be aware that patients with an autoimmune diagnosis such as antiphospholipid syndrome who develop signs and neurological symptoms suggestive of myasthenia gravis are at risk and should prompt an emergent evaluation by a specialist.
Resumo:
Regulation of androgen production is poorly understood. Adrenarche is the physiologic event in mid-childhood when the adrenal zona reticularis starts to produce androgens through specific expression of genes for enzymes and cofactors necessary for androgen synthesis. Similarly, expression and activities of same genes and products are deregulated in hyperandrogenic disorders such as the polycystic ovary syndrome (PCOS). Numerous studies revealed involvement of several signaling pathways stimulated through G-protein coupled receptors or growth factors transmitting their effects through cAMP- or non-cAMP-dependent signaling. Overall a complex network regulates androgen synthesis targeting involved genes and proteins at the transcriptional and post-translational levels. Newest players in the field are the DENND1A gene identified in PCOS patients and the MAPK14 which is the kinase phosphorylating CYP17 for enhanced lyase activity. Next generation sequencing studies of PCOS patients and transcriptome analysis of androgen producing tissues or cell models provide newer tools to identify modulators of androgen synthesis.
Resumo:
The polarization into M1 and M2 macrophages (MΦ) is essential to understand MΦ function. Consequently, the aim of this study was to determine the impact of IFN-γ (M1), IL-4 (M2) and IFN-β activation of MΦ on the susceptibility to genotype 1 and 2 porcine reproductive respiratory syndrome (PRRS) virus (PRRSV) strains varying in virulence. To this end, monocyte-derived MΦ were generated by culture during 72h and polarization was induced for another 24h by addition of IFN-γ, IL-4 or IFN-β. MΦ were infected with a collection of PRRSV isolates belonging to genotype 1 and genotype 2. Undifferentiated and M2 MΦ were highly susceptible to all PRRSV isolates. In contrast, M1 and IFN-β activated MΦ were resistant to low pathogenic genotype 1 PRRSV but not or only partially to genotype 2 PRRSV strains. Interestingly, highly virulent PRRSV isolates of both genotypes showed particularly high levels of infection compared with the prototype viruses in both M1 and IFN-β-treated MΦ (P<0.05). This was seen at the level of nucleocapsid expression, viral titres and virus-induced cell death. In conclusion, by using IFN-γ and IFN-β stimulated MΦ it is possible to discriminate between PRRSV varying in genotype and virulence. Genotype 2 PRRSV strains are more efficient at escaping the intrinsic antiviral effects induced by type I and II IFNs. Our in vitro model will help to identify viral genetic elements responsible for virulence, an information important not only to understand PRRS pathogenesis but also for a rational vaccine design. Our results also suggest that monocyte-derived MΦ can be used as a PRRSV infection model instead of alveolar MΦ, avoiding the killing of pigs.
Resumo:
Chordoid glioma of the third ventricle is a rare neuroepithelial tumor characterized by a unique histomorphology and exclusive association with the suprasellar/third ventricular compartment. Variously interpreted as either astrocytic- or ependymal-like, and speculatively ascribed to the lamina terminalis/subcommissural organ, its histogenesis remains, nevertheless, unsettled. Here, we report on a suprasellar chordoid glioma occurring in a 52-year-old man. Although displaying otherwise typical morphological features, the tumor was notable for expression of thyroid transcription factor 1, a marker of tumors of pituicytic origin in the context of the sellar region. We furthermore found overlapping immunoprofiles of this example of chordoid glioma and pituicytic tumors (pituicytoma and spindle cell oncocytoma), respectively. Specifically, phosphorylated ribosomal protein S6, a marker of mTOR pathway activation, was expressed in both groups. Based on these findings, we suggest that chordoid glioma and pituicytic tumors may form part of a spectrum of lineage-related neoplasms of the basal forebrain.
Resumo:
PURPOSE The aim of this study was to describe clinical signs and complications of Fuchs uveitis syndrome (FUS) with onset in childhood. METHODS Ophthalmologic findings and complications in patients with FUS becoming manifest before the age of 16 years were analyzed in a retrospective study at a tertiary referral uveitis center. Inclusion criteria were the presence of pathognomonic FUS findings at any time point and exclusion of any systemic immune-mediated or infectious disease. RESULTS A total of 23 patients (male = 16, female = 7) with juvenile FUS (unilateral n = 20, bilateral n = 3 patients) were included in the study. Mean ages at uveitis and FUS diagnosis were 12.0 ± 4.2 and 22.7 ± 10.7 years, respectively. In six patients, inflammation was noted at age ≤ 7 years. The following inflammatory signs were observed in a total of 26 eyes: ≤ 1+ anterior chamber cell grade (n = 26), vitreous cells (n = 24), fine keratic precipitates (KPs; n = 23), stellate KPs (n = 11), mutton-fat KPs (n = 23), diffuse (n = 24) or inferior (n = 8) distribution of KPs, Koeppe nodules (n = 10), and iris heterochromia (n = 14). A representative subgroup of patients (n = 5) is shown who presented with non-specific clinical signs in the beginning and in whom typical FUS signs became manifest only at a later stage. Secondary complications such as cataract (n = 19), ocular hypertension (n = 3), or glaucomatous disc damage (n = 2) were found after a mean uveitis duration of 11.6, 19.5, and 20.3 years, respectively. CONCLUSION FUS may begin in early childhood, and the characteristic findings may not be present at onset of disease. The diagnosis is often delayed for years, occasionally with the consequence of overtreatment with anti-inflammatory drugs.
Resumo:
As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.
An unusual stroke-like clinical presentation of Creutzfeldt-Jakob disease: acute vestibular syndrome
Resumo:
INTRODUCTION Vertigo and dizziness are common neurological symptoms in general practice. Most patients have benign peripheral vestibular disorders, but some have dangerous central causes. Recent research has shown that bedside oculomotor examinations accurately discriminate central from peripheral lesions in those with new, acute, continuous vertigo/dizziness with nausea/vomiting, gait unsteadiness, and nystagmus, known as the acute vestibular syndrome. CASE REPORT A 56-year-old man presented to the emergency department with acute vestibular syndrome for 1 week. The patient had no focal neurological symptoms or signs. The presence of direction-fixed, horizontal nystagmus suppressed by visual fixation without vertical ocular misalignment (skew deviation) was consistent with an acute peripheral vestibulopathy, but bilaterally normal vestibuloocular reflexes, confirmed by quantitative horizontal head impulse testing, strongly indicated a central localization. Because of a long delay in care, the patient left the emergency department without treatment. He returned 1 week later with progressive gait disturbance, limb ataxia, myoclonus, and new cognitive deficits. His subsequent course included a rapid neurological decline culminating in home hospice placement and death within 1 month. Magnetic resonance imaging revealed restricted diffusion involving the basal ganglia and cerebral cortex. Spinal fluid 14-3-3 protein was elevated. The rapidly progressive clinical course with dementia, ataxia, and myoclonus plus corroborative neuroimaging and spinal fluid findings confirmed a clinicoradiographic diagnosis of Creutzfeldt-Jacob disease. CONCLUSIONS To our knowledge, this is the first report of an initial presentation of Creutzfeldt-Jacob disease closely mimicking vestibular neuritis, expanding the known clinical spectrum of prion disease presentations. Despite the initial absence of neurological signs, the central lesion location was differentiated from a benign peripheral vestibulopathy at the first visit using simple bedside vestibular tests. Familiarity with these tests could help providers prevent initial misdiagnosis of important central disorders in patients presenting vertigo or dizziness.
Resumo:
The Brugada syndrome (BrS) is an inherited arrhythmia characterized by ST-segment elevation in V1-V3 leads and negative T wave on standard ECG. BrS patients are at risk of sudden cardiac death (SCD) due to ventricular tachyarrhythmia. At least 17 genes have been proposed to be linked to BrS, although recent findings suggested a polygenic background. Mutations in SCN5A, the gene coding for the cardiac sodium channel Nav1.5, have been found in 15-30% of index cases. Here, we present the results of clinical, genetic, and expression studies of a large Iranian family with BrS carrying a novel genetic variant (p.P1506S) in SCN5A. By performing whole-cell patch-clamp experiments using HEK293 cells expressing wild-type (WT) or p.P1506S Nav1.5 channels, hyperpolarizing shift of the availability curve, depolarizing shift of the activation curve, and hastening of the fast inactivation process were observed. These mutant-induced alterations lead to a loss of function of Nav1.5 and thus suggest that the p.P1506S variant is pathogenic. In addition, cascade familial screening found a family member with BrS who did not carry the p.P1506S mutation. Additional next generation sequencing analyses revealed the p.R25W mutation in KCNH2 gene in SCN5A-negative BrS patients. These findings illustrate the complex genetic background of BrS found in this family and the possible pathogenic role of a new SCN5A genetic variant.