37 resultados para sensor grid database system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as a fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range-based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranges and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1:3m for mean accuracy and 2:2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vast amount of temporal information is provided on the Web. Even though many facts expressed in documents are time-related, the temporal properties of Web presentations have not received much attention. In database research, temporal databases have become a mainstream topic in recent years. In Web documents, temporal data may exist as meta data in the header and as user-directed data in the body of a document. Whereas temporal data can easily be identified in the semi-structured meta data, it is more difficult to determine temporal data and its role in the body. We propose procedures for maintaining temporal integrity of Web pages and outline different approaches of applying bitemporal data concepts for Web documents. In particular, we regard desirable functionalities of Web repositories and other Web-related tools that may support the Webmasters in managing the temporal data of their Web documents. Some properties of a prototype environment are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained partial carcass condemnation (PCC) data for cattle (2009-2010) from a Swiss slaughterhouse. Data on whole carcass condemnations (WCC) carried out at the same slaughterhouse over those years were extracted from the national database for meat inspection. We found that given the differences observed in the WCC and PCC time series, it is likely that both indicators respond to different health events in the population and that one cannot be substituted by the other. Because PCC recordings are promising for syndromic surveillance, the meat inspection database should be capable to record both WCC and PCC data in the future. However, a standardised list of reasons for PCC needs to be defined and used nationwide in all slaughterhouses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor positioning has become an emerging research area because of huge commercial demands for location-based services in indoor environments. Channel State Information (CSI) as fine-grained physical layer information has been recently proposed to achieve high positioning accuracy by using range based methods, e.g., trilateration. In this work, we propose to fuse the CSI-based ranging and velocity estimated from inertial sensors by an enhanced particle filter to achieve highly accurate tracking. The algorithm relies on some enhanced ranging methods and further mitigates the remaining ranging errors by a weighting technique. Additionally, we provide an efficient method to estimate the velocity based on inertial sensors. The algorithms are designed in a network-based system, which uses rather cheap commercial devices as anchor nodes. We evaluate our system in a complex environment along three different moving paths. Our proposed tracking method can achieve 1.3m for mean accuracy and 2.2m for 90% accuracy, which is more accurate and stable than pedestrian dead reckoning and range-based positioning.