209 resultados para implant dentistry
Resumo:
BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.
Resumo:
BACKGROUND Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. PURPOSE To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. MATERIALS AND METHODS Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. RESULTS Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p < .001). Fracture rate of bars extensions (4.7% vs 14.8%, p < .001) and matrices (1% vs 13%, p < .001) was lower for Ti-bar. Matrices activation was required 2.4× less often in Ti-bar. ΔBIC remained stable for both groups. CONCLUSIONS Implant overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased.
Resumo:
PURPOSE The study aims to evaluate three-dimensionally (3D) the accuracy of implant impressions using a new resin splinting material, "Smart Dentin Replacement" (SDR). MATERIALS AND METHODS A titanium model of an edentulous mandible with six implant analogues was used as a master model and its dimensions measured with a coordinate measuring machine. Before the total 60 impressions were taken (open tray, screw-retained abutments, vinyl polysiloxane), they were divided in four groups: A (test): copings pick-up splinted with dental floss and fotopolymerizing SDR; B (test): see A, additionally sectioned and splinted again with SDR; C (control): copings pick-up splinted with dental floss and autopolymerizing Duralay® (Reliance Dental Mfg. Co., Alsip, IL, USA) acrylic resin; and D (control): see C, additionally sectioned and splinted again with Duralay. The impressions were measured directly with an optomechanical coordinate measuring machine and analyzed with a computer-aided design (CAD) geometric modeling software. The Wilcoxon matched-pair signed-rank test was used to compare groups. RESULTS While there was no difference (p = .430) between the mean 3D deviations of the test groups A (17.5 μm) and B (17.4 μm), they both showed statistically significant differences (p < .003) compared with both control groups (C 25.0 μm, D 19.1 μm). CONCLUSIONS Conventional impression techniques for edentulous jaws with multiple implants are highly accurate using the new fotopolymerizing splinting material SDR. Sectioning and rejoining of the SDR splinting had no impact on the impression accuracy.
Resumo:
Platelet rich plasma (PRP) has been proposed to be a useful adjunct to bone grafting.
Resumo:
PURPOSE: The aim of this two-center study was to evaluate screw-type titanium implants with a chemically modified, sandblasted and acid-etched surface when placed in the posterior maxilla or mandible, and loaded 21 days after placement. MATERIAL AND METHODS: All 56 patients met strict inclusion criteria and provided informed consent. Each patient displayed either a single-tooth gap, an extended edentulous space, or a distal extension situation in the posterior mandible or maxilla. Eighty-nine dental implants (SLActive, Institut Straumann AG, Basel, Switzerland) were inserted according to an established nonsubmerged protocol and underwent undisturbed healing for a period of 21 days. Where appropriate, the implants were loaded after 21 days of healing with provisional restorations in full occlusion. Definitive metal ceramic restorations were fabricated and positioned on each implant after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 24 months after implant placement. RESULTS: Of the 89 inserted implants, two (2.2%) implants failed to integrate and were removed during healing, and two (2.2%) additional implants required a prolonged healing time. A total of 85 (95.6%) implants were therefore loaded without incident after 21 days of healing. No additional implant was lost throughout the study period, whereas one implant was lost to follow-up and therefore left unaccounted for further analysis. The remaining 86 implants all exhibited favorable radiographic and clinical findings. Based on strict success criteria, these implants were considered successfully integrated 2 years after insertion, resulting in a 2-year success rate of 97.7%. CONCLUSION: The results of this prospective two-center study demonstrate that titanium implants with a modified SLA surface can predictably achieve successful tissue integration when loaded in full occlusion 21 days after placement. Integration could be maintained without incident for at least 2 years of follow-up.
Resumo:
BACKGROUND: Premature collagen membrane degradation may compromise the outcome of osseous regenerative procedures. Tetracyclines (TTCs) inhibit the catalytic activities of human metalloproteinases. Preprocedural immersion of collagen membranes in TTC and systemic administration of TTC may be possible alternatives to reduce the biodegradation of native collagen membranes. AIM: To evaluate the in vivo degradation of collagen membranes treated by combined TTC immersion and systemic administration. MATERIALS AND METHODS: Seventy-eight bilayered porcine collagen membrane disks were divided into three groups and were immersed in 0, 50, or 100 mg/mL TTC solution. Three disks, one of each of the three groups, were implanted on the calvaria of each of 26 Wistar rats. Thirteen (study group) were administered with systemic TTC (10 mg/kg), while the remaining 13 received saline injections (control group). Calvarial tissues were retrieved after 3 weeks, and histological sections were analyzed by image analysis software. RESULTS: Percentage of remaining collagen area within nonimpregnated membranes was 52.26 ± 20.67% in the study group, and 32.74 ± 13.81% in the control group. Immersion of membranes in 100 mg/mL TTC increased the amount of residual collagen to 63.46 ± 18.19% and 42.82 ± 12.99% (study and control groups, respectively). Immersion in 50 mg/mL TTC yielded maximal residual collagen values: 80.75 ± 14.86% and 59.15 ± 8.01% (study and control groups, respectively). Differences between the TTC concentrations, and between the control and the study groups were statistically significant. CONCLUSIONS: Immersion of collagen membranes in TTC solution prior to their implantation and systemic administration of TTC significantly decreased the membranes' degradation.
Resumo:
Background: A controlled, gradual distraction of the periosteum is expected to result in the formation of new bone. Purpose: This study was designed to estimate the possibility of new bone formation by periosteal distraction in a rat calvarium model. Material and Methods: Sixteen animals were subjected to a 7-day latency period and distraction rate at 0.4 mm/24 hours for 10 days. Two experimental groups with seven rats each were killed at 10 and 20 days of consolidation period and analyzed by means of microcomputed tomography, histologically and histomorphometry. Results: In the central regions underneath the disk device, signs of both bone apposition and bone resorption were observed. Peripheral to the disc, new bone was consistently observed. This new bone was up to two and three times thicker than the original bone after a 10- and 20-day consolidation period, respectively. Signs of ongoing woven bone formation indicated that the stimulus for new bone formation was still present. There were no statistically significant differences regarding bone density, bone volume, and total bone height between the two groups. Conclusion: The periosteal distraction model in the rat calvarium can stimulate the formation of considerable amounts of new bone.
Resumo:
Background: The relative contributions of different, potential factors to new bone formation in periosteal distraction osteogenesis are unknown. Purpose: The aim of the present study was to assess the influence of original bone and periosteum on bone formation during periosteal distraction osteogenesis in a rat calvarial model by means of histology and histomorphometry. Methods: A total of 48 rats were used for the experiment. The contribution of the periosteum was assessed by either intact or incised periosteum or an occlusive versus a perforated distraction plate. The cortical bone was either left intact or perforated. Animals were divided in eight experimental groups considering the three possible treatment modalities. All animals were subjected to a 7-day latency period, a 10-day distraction period and a 7-day consolidation period. The newly formed bone was analyzed histologically and histomorphometrically. Results: New, mainly woven bone was found in all groups. Differences in the maximum height of new bone were observed and depended on location. Under the distraction plate, statistically significant differences in maximum bone height were found between the group with perforations in both cortical bone and distraction plate and the group without such perforations. Conclusions: If the marrow cavities were not opened, the contribution to new bone formation was dominant from the periosteum. If the bone perforations opened the marrow cavities, a significant contribution to new bone formation originated from the native bone.
Resumo:
Background: Autogenous bone grafts obtained by different harvesting techniques behave differently during the process of graft consolidation; the underlying reasons are however not fully understood. One theory is that harvesting techniques have an impact on the number and activity of the transplanted cells which contribute to the process of graft consolidation. Materials and Methods: To test this assumption, porcine bone grafts were harvested with four different surgical procedures: bone mill, piezosurgery, bone drilling (bone slurry), and bone scraper. After determining cell viability, the release of molecules affecting bone formation and resorption was assessed by reverse transcription polymerase chain reaction and immunoassay. The mitogenic and osteogenic activity of the conditioned media was evaluated in a bioassay with isolated bone cells. Results: Cell viability and the release of molecules affecting bone formation were higher in samples harvested by bone mill and bone scraper when compared with samples prepared by bone drilling and piezosurgery. The harvesting procedure also affected gene expression, for example, bone mill and bone scraper samples revealed significantly higher expression of growth factors such as bone morphogenetic protein-2 and vascular endothelial growth factor compared with the two other modalities. Receptor activator of nuclear factor kappa B ligand expression was lowest in bone scraper samples. Conclusion: These data can provide a scientific basis to better understand the impact of harvesting techniques on the number and activity of transplanted cells, which might contribute to the therapeutic outcome of the augmentation procedure.
Resumo:
Purpose: This retrospective study assessed the 10-year outcomes of titanium implants with a sandblasted and acid-etched (SLA) surface in a large cohort of partially edentulous patients. Materials and Methods: Records of patients treated with SLA implants between May 1997 and January 2001 were screened. Eligible patients were contacted and invited to undergo a clinical and radiologic examination. Each implant was classified according to strict success criteria. Results: Three hundred three patients with 511 SLA implants were available for the examination. The mean age of the patients at implant surgery was 48 years. Over the 10-year period, no implant fracture was noted, whereas six implants (1.2%) were lost. Two implants (0.4%) showed signs of suppuration at the 10-year examination, whereas seven implants had a history of peri-implantitis (1.4%) during the 10-year period, but presented with healthy peri-implant soft tissues at examination. The remaining 496 implants fulfilled the success criteria. The mean Plaque Index was 0.65 (±0.64), the mean Sulcus Bleeding Index 1.32 (±0.57), the mean Probing Depth 3.27 mm (±1.06), and the mean distance from the implant shoulder to the mucosal margin value -0.42 mm (±1.27). The radiologic mean distance from the implant shoulder to the first bone-to-implant contact was 3.32 mm (±0.73). Conclusion: The present retrospective analysis resulted in a 10-year implant survival rate of 98.8% and a success rate of 97.0%. In addition, the prevalence of peri-implantitis in this large cohort of orally healthy patients was low with 1.8% during the 10-year period.
Resumo:
The term osseoperception describes the capability of developing a subtle tactile sensibility over dental implants. The present clinical study aims at clarifying the question of how far tactile sensibility is to be attributed to the periodontium of the natural opposing tooth of the implant.
Resumo:
The role of and interaction between bacterial infection and biomechanical impact in the development of peri-implant inflammatory processes is not clear.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.
Resumo:
AIM: To test in vitro the mechanical resistance, rotational misfit and failure mode of three original implant-abutment connections and to compare them to two connections between non-original abutments connected to one of the original implants. MATERIAL AND METHODS: Three different implants with small diameters (3.3 mm for Straumann Roxolid, 3.5 mm for Nobel Biocare Replace and Astra Tech Osseospeed TX) were connected with individualized titanium abutments. Twelve implants from each system were connected to their original abutments (Straumann CARES, Nobel Biocare Procera, Astra Tech Atlantis). Twenty-four Roxolid implants were connected with non-original abutments using CAD/CAM procedures from the other two manufacturers (12 Nobel Biocare Procera and 12 Astra Tech Atlantis). For the critical bending test, a Zwick/Roell 1475 machine and the Xpert Zwick/Roell software were used. RESULTS: The rotational misfit varied when comparing the different interfaces. The use of non-original grade V titanium abutments on Roxolid implants increased the force needed for deformation. The fracture mode was different with one of the original connections. CONCLUSIONS: Non-original abutments differ in design of the connecting surfaces and material and demonstrate higher rotational misfit. These differences may result in unexpected failure modes.
Resumo:
Background: The use of endosseous dental implants has become common practice for the rehabilitation of edentulous patients, and a two-implant overdenture has been recommended as the standard of care. The use of small-diameter implants may extend treatment options and reduce the necessity for bone augmentation. However, the mechanical strength of titanium is limited, so titanium alloys with greater tensile and fatigue strength may be preferable. Purpose: This randomized, controlled, double-blind, multicenter study investigated in a split-mouth model whether small-diameter implants made from Titanium-13Zirconium alloy (TiZr, Roxolid™) perform at least as well as Titanium Grade IV implants. Methods and Materials: Patients with an edentulous mandible received one TiZr and one Ti Grade IV small-diameter bone level implant (3.3 mm, SLActive®) in the interforaminal region. The site distribution was randomized and double-blinded. Outcome measures included change in radiological peri-implant bone level from surgery to 12 months post-insertion (primary), implant survival, success, soft tissue conditions, and safety (secondary). Results: Of 91 treated patients, 87 were available for the 12-month follow-up. Peri-implant bone level change (-0.3 ± 0.5 mm vs -0.3 ± 0.6 mm), plaque, and sulcus bleeding indices were not significantly different between TiZr and Ti Grade IV implants. Implant survival rates were 98.9 percent and 97.8 percent, success rates were 96.6 percent and 94.4 percent, respectively. Nineteen minor and no serious adverse events were related to the study devices. Conclusion: This study confirms that TiZr small-diameter bone level implants provide at least the same outcomes after 12 months as Ti Grade IV bone level implants. The improved mechanical properties of TiZr implants may extend implant therapy to more challenging clinical situations.