40 resultados para feldspathic ceramic
Resumo:
Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.
Resumo:
This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.
Resumo:
Einleitung: Die Anzahl zahnärztlicher Zemente sowie Restaurationsmaterialien steigt stetig. Die richtige Zementwahl für einen zuverlässigen Haftverbund zwischen Restaurationsmaterial und Zahnsubstanz ist von Interesse für den Kliniker. Ziel der vorliegenden in vitro-Studie war es daher, den Dentinhaftverbund von verschiedenen Zementen in Kombination mit verschiedenen indirekten Restaurationsmaterialien zu untersuchen. Material und Methoden: Zylindrische Probekörper aus sechs Restaurationsmaterialien (Goldlegierung, Titan, Feldspat-Keramik, Leuzit-Glaskeramik, Zirkon sowie Komposit) wurden an einem Ende plangeschliffen und sandgestrahlt. Die Zylinder aus Feldspat-Keramik und Leuzit-Glaskeramik wurden zusätzlich mit Flusssäure geätzt und silanisiert. Die Zylinder wurden anschliessend mit acht Zementen auf plangeschliffenes Dentin extrahierter menschlicher Zähne zementiert (ein Zink-Phosphatzement (DeTrey Zinc), ein konventioneller Glasionomerzement (Fuji I), ein kunststoffmodifizierter Glasionomerzement (Fuji Plus), ein "etch-&-rinse" Kompositzement (Variolink II), zwei "self-etch" Kompositzemente (Panavia F2.0 und Multilink) und zwei "self-adhesive" Kompositzemente (RelyX Unicem Aplicap und Maxcem)). Nach einwöchiger Wasserlagerung bei 37°C wurden die Dentinhaftwerte der Zylinder (n=8 pro Gruppe) mittels Scherkraft-Test gemessen. Zusätzlich wurde das Frakturmuster unter dem Lichtmikroskop bestimmt. Die Haftwerte wurden mittels zweifaktorieller ANOVA und einem post hoc-Test analysiert (Signifikanzniveau α = 0.05). Resultate: Sowohl das Restaurationsmaterial wie auch der Zement hatten einen statistisch signifikanten Effekt auf den Haftverbund. Der Zink-Phosphatzement sowie beide Glasionomerzemente zeigten die niedrigsten Haftwerte. Die höchsten Haftwerte wurden mit beiden "self-etch" und einem der zwei "self-adhesive" Kompositzementen erzielt. Im Allgemeinen variierte das Frakturmuster deutlich je nach Zement und Restaurationsmaterial. Schlussfolgerungen: Der Dentinhaftverbund wurde stärker vom Zement beeinflusst als vom Restaurationsmaterial. Die Kompositzemente erzielten im Grossen und Ganzen die höchsten Haftwerte.
Resumo:
An analysis about the effect of carbon enrichment of allylhydridopolycarbosilane SMP10® with divinylbenzene (DVB) as a promising material for electrical conductive micro-electrical mechanical systems (MEMS) is presented. The liquid precursors can be micropipetted and cured in polytetrafluoroethylene (PTFE) molds to produce 14 mm diameter disc shaped samples. The effect of pyrolysis temperature and carbon content on the electrical conductivity is discussed. The addition of 28.7 wt.% of DVB was found to be the optimum amount. Carbon was preserved in the microstructure during pyrolysis and the ceramic yield increased from 77.5 to 80.5 wt.%. The electrical conductivity increased from 10−6 to 1 S/cm depending on the annealing temperature. Furthermore, the ceramic samples obtained with this composition were found to be in many cases crack free or with minimal cracks in contrast with the behavior of pure SMP10. Using the same process we demonstrate that also microsized ceramic samples can be produced.
Resumo:
Procurement of fresh tissue of prostate cancer is critical for biobanking and generation of xenograft models as an important preclinical step towards new therapeutic strategies in advanced prostate cancer. However, handling of fresh radical prostatectomy specimens has been notoriously challenging given the distinctive physical properties of prostate tissue and the difficulty to identify cancer foci on gross examination. Here, we have developed a novel approach using ceramic foam plates for processing freshly cut whole mount sections from radical prostatectomy specimens without compromising further diagnostic assessment. Forty-nine radical prostatectomy specimens were processed and sectioned from the apex to the base in whole mount slices. Putative carcinoma foci were morphologically verified by frozen section analysis. The fresh whole mount slices were then laid between two ceramic foam plates and fixed overnight. To test tissue preservation after this procedure, formalin-fixed and paraffin-embedded whole mount sections were stained with hematoxylin and eosin (H&E) and analyzed by immunohistochemistry, fluorescence, and silver in situ hybridization (FISH and SISH, respectively). There were no morphological artifacts on H&E stained whole mount sections from slices that had been fixed between two plates of ceramic foam, and the histological architecture was fully retained. The quality of immunohistochemistry, FISH, and SISH was excellent. Fixing whole mount tissue slices between ceramic foam plates after frozen section examination is an excellent method for processing fresh radical prostatectomy specimens, allowing for a precise identification and collection of fresh tumor tissue without compromising further diagnostic analysis.
Resumo:
OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. CONCLUSIONS Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs.
Resumo:
BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.
Resumo:
In this short review, we provide some new insights into the material synthesis and characterization of modern multi-component superconducting oxides. Two different approaches such as the high-pressure, high-temperature method and ceramic combinatorial chemistry will be reported with application to several typical examples. First, we highlight the key role of the extreme conditions in the growth of Fe-based superconductors, where a careful control of the composition-structure relation is vital for understanding the microscopic physics. The availability of high-quality LnFeAsO (Ln = lanthanide) single crystals with substitution of O by F, Sm by Th, Fe by Co, and As by P allowed us to measure intrinsic and anisotropic superconducting properties such as Hc2, Jc. Furthermore, we demonstrate that combinatorial ceramic chemistry is an efficient way to search for new superconducting compounds. A single-sample synthesis concept based on multi-element ceramic mixtures can produce a variety of local products. Such a system needs local probe analyses and separation techniques to identify compounds of interest. We present the results obtained from random mixtures of Ca, Sr, Ba, La, Zr, Pb, Tl, Y, Bi, and Cu oxides reacted at different conditions. By adding Zr but removing Tl, Y, and Bi, the bulk state superconductivity got enhanced up to about 122 K.
Resumo:
The focus of this research programme is to develop a single phase ceramic wasteform for waste PuO2 that is unsuitable for fuel manufacture. A suite of synthetic mineral systems have been considered including titanate, zirconate, phosphate and silicate based matrices. Although a wealth of information on plutonium disposition in some of the systems exists in the literature, the data is not always directly comparable which hinders comparison between different ceramic hosts. The crux of this research has been to compile a database of information on the proposed hosts to allow impartial comparison of the relative merits of each system. © 2009 Materials Research Society.