123 resultados para abutment screw


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Clinical studies related to the long-term outcomes with implant-supported reconstructions are still sparse. The aim of this 10-year retrospective study was to assess the rate of mechanical/technical complications and failures with implant supported fixed dental prostheses (FDPs) and single crowns (SCs) in a large cohort of partially edentulous patients. MATERIALS AND METHODS The comprehensive multidisciplinary examination consisted of a medical/dental history, clinical examination, and a radiographic analysis. Prosthodontic examination evaluated the implant-supported reconstructions for mechanical/technical complications and failures, occlusal analysis, presence/absence of attrition, and location, extension, and retention type. RESULTS Out of three hundred ninety seven fixed reconstructions in three hundred three patients, two hundred sixty eight were SCs and one hundred twenty seven were FDPs. Of these three hundred ninety seven implant-supported reconstructions, 18 had failed, yielding a failure rate of 4.5% and a survival rate of 95.5% after a mean observation period of 10.75 years (range: 8.4-13.5 years). The most frequent complication was ceramic chipping (20.31%) followed by occlusal screw loosening (2.57%) and loss of retention (2.06%). No occlusal screw fracture, one abutment loosening, and two abutment fractures were noted. This resulted in a total mechanical/technical complication rate of 24.7%. The prosthetic success rate over a mean follow-up time of 10.75 years was 70.8%. Generalized attrition and FDPs were associated with statistically significantly higher rates of ceramic fractures when compared with SCs. Cantilever extensions, screw retention, anterior versus posterior, and gender did not influence the chipping rate. CONCLUSIONS After a mean exposure time of 10.75 years, high survival rates for reconstructions supported by Sand-blasted Large-grit Acid-etched implants can be expected. Ceramic chipping was the most frequent complication and was increased in dentitions with attrition and in FDPs compared with SCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The cost-effectiveness of cast nonprecious frameworks has increased their prevalence in cemented implant crowns. The purpose of this study was to assess the effect of the design and height of the retentive component of a standard titanium implant abutment on the fit, possible horizontal rotation and retention forces of cast nonprecious alloy crowns prior to cementation. MATERIALS AND METHODS Two abutment designs were examined: Type A with a 6° taper and 8 antirotation planes (Straumann Tissue-Level RN) and Type B with a 7.5° taper and 1 antirotation plane (SICace implant). Both types were analyzed using 60 crowns: 20 with a full abutment height (6 mm), 20 with a medium abutment height (4 mm), and 20 with a minimal (2.5 mm) abutment height. The marginal and internal fit and the degree of possible rotation were evaluated by using polyvinylsiloxane impressions under a light microscope (magnification of ×50). To measure the retention force, a custom force-measuring device was employed. STATISTICAL ANALYSIS one-sided Wilcoxon rank-sum tests with Bonferroni-Holm corrections, Fisher's exact tests, and Spearman's rank correlation coefficient. RESULTS Type A exhibited increased marginal gaps (primary end-point: 55 ± 20 μm vs. 138 ± 59 μm, P < 0.001) but less rotation (P < 0.001) than Type B. The internal fit was also better for Type A than for Type B (P < 0.001). The retention force of Type A (2.49 ± 3.2 N) was higher (P = 0.019) than that of Type B (1.27 ± 0.84 N). Reduction in abutment height did not affect the variables observed. CONCLUSION Less-tapered abutments with more antirotation planes provide an increase in the retention force, which confines the horizontal rotation but widens the marginal gaps of the crowns. Thus, casting of nonprecious crowns with Type A abutments may result in clinically unfavorable marginal gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The Short Communication presents a clinical case in which a novel procedure--the "Individualized Scanbody Technique" (IST)--was applied, starting with an intraoral digital impression and using CAD/CAM process for fabrication of ceramic reconstructions in bone level implants. MATERIAL AND METHODS A standardized scanbody was individually modified in accordance with the created emergence profile of the provisional implant-supported restoration. Due to the specific adaptation of the scanbody, the conditioned supra-implant soft tissue complex was stabilized for the intraoral optical scan process. Then, the implant platform position and the supra-implant mucosa outline were transferred into the three-dimensional data set with a digital impression system. Within the technical workflow, the ZrO2 -implant-abutment substructure could be designed virtually with predictable margins of the supra-implant mucosa. RESULTS After finalization of the 1-piece screw-retained full ceramic implant crown, the restoration demonstrated an appealing treatment outcome with harmonious soft tissue architecture. CONCLUSIONS The IST facilitates a simple and fast approach for a supra-implant mucosal outline transfer in the digital workflow. Moreover, the IST closes the interfaces in the full digital pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To analyze the precision of fit of implant-supported screw-retained computer-aided-designed and computer-aided-manufactured (CAD/CAM) zirconium dioxide (ZrO) frameworks. MATERIALS AND METHODS Computer-aided-designed and computer-aided-manufactured ZrO frameworks (NobelProcera) for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI positions 15, 13, 11, 21, 23, 25) were fabricated using a laser (ZrO-L, N = 6) and a mechanical scanner (ZrO-M, N = 5) for digitizing the implant platform and the cuspid-supporting framework resin pattern. Laser-scanned CAD/CAM titanium (TIT-L, N = 6) and cast CoCrW-alloy frameworks (Cast, N = 5) fabricated on the same model and designed similar to the ZrO frameworks were the control. The one-screw test (implant 25 screw-retained) was applied to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from approximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS No statistically significant pairwise difference was observed between the relative effects of vertical microgap between ZrO-L (median 14 μm; 95% CI 10-26 μm), ZrO-M (18 μm; 12-27 μm) and TIT-L (15 μm; 6-18 μm), whereas the values of Cast (236 μm; 181-301 μm) were significantly higher (P < 0.001) than the three CAD/CAM groups. A monotonous trend of increasing values from implant 23 to 15 was observed in all groups (ZrO-L, ZrO-M and Cast P < 0.001, TIT-L P = 0.044). CONCLUSIONS Optical and tactile scanners with CAD/CAM technology allow for the fabrication of highly accurate long-span screw-retained ZrO implant-reconstructions. Titanium frameworks showed the most consistent precision. Fit of the cast alloy frameworks was clinically inacceptable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN Biomechanical cadaveric study. OBJECTIVE To determine whether augmentation positively influence screw stability or not. SUMMARY OF BACKGROUND DATA Implantation of pedicle screws is a common procedure in spine surgery to provide an anchorage of posterior internal fixation into vertebrae. Screw performance is highly correlated to bone quality. Therefore, polymeric cement is often injected through specifically designed perforated pedicle screws into osteoporotic bone to potentially enhance screw stability. METHODS Caudocephalic dynamic loading was applied as quasi-physiological alternative to classical pull-out tests on 16 screws implanted in osteoporotic lumbar vertebrae and 20 screws in nonosteoporotic specimen. Load was applied using 2 different configurations simulating standard and dynamic posterior stabilization devices. Screw performance was quantified by measurement of screwhead displacement during the loading cycles. To reduce the impact of bone quality and morphology, screw performance was compared for each vertebra and averaged afterward. RESULTS All screws (with or without cement) implanted in osteoporotic vertebrae showed lower performances than the ones implanted into nonosteoporotic specimen. Augmentation was negligible for screws implanted into nonosteoporotic specimen, whereas in osteoporotic vertebrae pedicle screw stability was significantly increased. For dynamic posterior stabilization system an increase of screwhead displacement was observed in comparison with standard fixation devices in both setups. CONCLUSION Augmentation enhances screw performance in patients with poor bone stock, whereas no difference is observed for patients without osteoporosis. Furthermore, dynamic stabilization systems have the possibility to fail when implanted in osteoporotic bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To compare the free-hand (FH) technique of placing interlocking screws to a commercially available electromagnetic (EM) targeting system in terms of operating time, radiation dose, and accuracy of screw placement. METHODS Between September 2011 and July 2012, we prospectively randomized 100 consecutive femur shaft fractures in 99 patients requiring intramedullary nails to either FH using fluoroscopy (n = 43) or EM targeting (n = 38; Sureshot). SETTING Single Level 1 University Hospital Trauma Center. MAIN OUTCOME MEASUREMENTS The 2 groups were assessed for distal locking with respect to time, radiation, and accuracy. RESULTS Eight-one fractures had data accurately recorded (38 EM/43 FH). The average total operative time was 50 minutes (range, 25-88 minutes; SD, 13.9 minutes) for the FH group and 57 minutes (range, 40-103 minutes; SD, 16.12 minutes) for the EM group. The average time for distal locking was 10 minutes (range, 4-16 minutes; SD, 3.56 minutes) with FH and 11 minutes (range, 6-28 minutes; SD, 10.24 minutes) with EM. Average radiation dose for distal locking was significantly less (P < 0.0001) for EM at 230.54 μGy (range, 51-660 μGy; SD, 0.17 μGy) compared with 690.27 μGy (range, 200-2310 μGy; SD, 0.52 μGy) for FH. There were 2 misplaced drill bits in FH and 3 in EM. This was not statistically significant (P = 0.888). CONCLUSIONS The electromagnetic targeting device (Sureshot) significantly reduced radiation exposure during placement of distal interlocking screws, without sacrificing operative time, and was equivalent in accuracy when compared with the FH technique. LEVEL OF EVIDENCE Therapeutic level II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Für Patienten an der Hämodialyse ist nach Versagen der klassischen arterio-venösen Fisteln oder Shunts ein direkter Gefässzugang mittels Katheter lebensnotwendig. Permanente zentralvenöse Katheter penetrieren die Hals- und Thoraxweichteile und die Haut ohne rigide Befestigung. Die Infektionsrate ist hoch und führt oft zur Explantation. Knochenverankerte Hörgeräte sind zur Behandlung bei Schalleitungsschwerhörigkeit etabliert. Das Implantat sitzt fest im Felsenbein und der Aufsatz penetriert die Haut. Schwere Infektionen, die eine Explantation nötig machen, sind sehr selten. Wir nehmen an, dass einer der Hauptgründe für die tiefe Komplikationsrate die starke Befestigung des Implantats am Knochen ist, wodurch die Hautbewegungen relativ zum Knochen minimiert werden. Basierend auf den Erfahrungen mit implantierten Hörsystemen haben wir einen perkutanen knochenverankerten Hämodialysezugang im Bereich des Felsenbeins als vorteilhafte Alternative zum herkömmlichen zentralvenösen Katheterzugang entwickelt. Dabei wurde die Felsenbeinanatomie und Knochendicke zur Lokalisierung des idealen Implantationsortes untersucht; die Schraubenstabilität im Knochen getestet; ein Titanimplantat inklusive Ventile und Katheter, sowie chirurgische Instrumente zur sicheren Implantation entwickelt. Der knochenverankerte Hämodialysezugang wurde auf Flussrate, Dichtigkeit und Reinigung getestet; die Platzierung des Katheters mittels Seldingertechnik in die V. jugularis interna über eine Halsinzision festgelegt. Die Resultate unserer Arbeit zeigen die technische Machbarkeit eines im Felsenbein verankerten neuartigen Hämodialysezuganges und bilden die Grundlage einer inzwischen bewilligten klinischen Pilotstudie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION In iliosacral screw fixation, the dimensions of solely intraosseous (secure) pathways, perpendicular to the ilio-sacral articulation (optimal) with corresponding entry (EP) and aiming points (AP) on lateral fluoroscopic projections, and the factors (demographic, anatomic) influencing these have not yet been described. METHODS In 100 CTs of normal pelvises, the height and width of the secure and optimal pathways were measured on axial and coronal views bilaterally (total measurements: n=200). Corresponding EP and AP were defined as either the location of the screw head or tip at the crossing of lateral innominate bones' cortices (EP) and sacral midlines (AP) within the centre of the pathway, respectively. EP and AP were transferred to the sagittal pelvic view using a coordinate system with the zero-point in the centre of the posterior cortex of the S1 vertebral body (x-axis parallel to upper S1 endplate). Distances are expressed in relation to the anteroposterior distance of the S1 upper endplate (in %). The influence of demographic (age, gender, side) and/or anatomic (PIA=pelvic incidence angle; TCA=transversal curvature angle, PID-Index=pelvic incidence distance-index; USW=unilateral sacral width-index) parameters on pathway dimensions and positions of EP and AP were assessed (multivariate analysis). RESULTS The width, height or both factors of the pathways were at least 7mm or more in 32% and 53% or 20%, respectively. The EP was on average 14±24% behind the centre of the posterior S1 cortex and 41±14% below it. The AP was on average 53±7% in the front of the centre of the posterior S1 cortex and 11±7% above it. PIA influenced the width, TCA, PID-Index the height of the pathways. PIA, PID-Index, and USW-Index significantly influenced EP and AP. Age, gender, and TCA significantly influenced EP. CONCLUSION Secure and optimal placement of screws of at least 7mm in diameter will be unfeasible in the majority of patients. Thoughtful preoperative planning of screw placement on CT scans is advisable to identify secure pathways with an optimal direction. For this purpose, the presented methodology of determining and transferring EPs and APs of corresponding pathways to the sagittal pelvic view using a coordinate system may be useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Mechanical evaluation of a novel screw position used for repair in a type III distal phalanx fracture model and assessment of solar canal penetration (SCP). STUDY DESIGN: Experimental study. SAMPLE POPULATION: Disarticulated equine hooves (n = 24) and 24 isolated distal phalanges. METHODS: Hooves/distal phalanges cut in a sagittal plane were repaired with 1 of 2 different cortical screw placements in lag fashion. In group 1 (conventional screw placement), the screw was inserted halfway between the proximal border of the solar canal (SC) and the subchondral bone surface on a line parallel to the dorsal cortex, whereas in group 2, the screw was inserted more palmar/plantar, where a perpendicular line drawn from the group 1 position reached the palmar/plantar cortex. Construct strength was evaluated by 3-point bending to failure. SCP was assessed by CT imaging and macroscopically. RESULTS: Screws were significantly longer in group 2 and in forelimbs. Group 2 isolated distal phalanges had a significantly more rigid fixation compared with the conventional screw position (maximum point at failure 31%, bending stiffness 41% higher). Lumen reduction of the SC was observed in 13/52 specimens (all from group 2), of which 9 were forelimbs. CONCLUSIONS: More distal screw positioning compared with the conventionally recommended screw position for internal fixation of type III distal phalangeal fractures allows placement of a longer screw and renders a more rigid fracture fixation. The novel screw position, however, carries a higher risk of SCP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To describe (1) preoperative findings and surgical technique, (2) intraoperative difficulties, and (3) postoperative complications and long-term outcome of equine cheek tooth extraction using a minimally invasive transbuccal screw extraction (MITSE) technique. STUDY DESIGN: Retrospective case series. ANIMALS: Fifty-four equids; 50 horses, 3 ponies, and 1 mule. METHODS: Fifty-eight MITSE procedures were performed to extract cheek teeth in 54 equids. Peri- and intraoperative difficulties, as well as short- (<1 month) and long-term (>6 months) postoperative complications were recorded. Followup information was obtained through telephone interviews, making specific inquiries about nasal discharge, facial asymmetry, and findings consistent with surgical site infection. RESULTS: Preoperative findings that prompted exodontia included 50 cheek teeth with apical infections, 48 fractures, 4 neoplasia, 2 displacements, and 1 supernumerary tooth. Previous oral extraction was attempted but had failed in 55/58 (95%) animals because of cheek tooth fracture in 28, or insufficient clinical crown for extraction with forceps in 27. MITSE was successful in removing the entire targeted dental structure in 47/58 (81%) procedures. However, MITSE failed to remove the entire targeted dental structure in 11/58 (19%) procedures and was followed by repulsion in 10/11 (91%). Short-term postoperative complications included bleeding (4/58 procedures, 7%) and transient facial nerve paralysis (4/58 procedures, 7%). Owners were satisfied with the functional and cosmetic outcome for 40/41 (98%) animals with followup. CONCLUSION: MITSE offers an alternate for cheek tooth extraction in equids, where conventional oral extraction is not possible or has failed. Overall, there was low morbidity, which compares favorably with invasive buccotomy or repulsion techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To determine the biomechanical effect of an intervertebral spacer on construct stiffness in a PVC model and cadaveric canine cervical vertebral columns stabilized with monocortical screws/polymethylmethacrylate (PMMA). STUDY DESIGN Biomechanical study. SAMPLE POPULATION PVC pipe; cadaveric canine vertebral columns. METHODS PVC model-PVC pipe was used to create a gap model mimicking vertebral endplate orientation and disk space width of large-breed canine cervical vertebrae; 6 models had a 4-mm gap with no spacer (PVC group 1); 6 had a PVC pipe ring spacer filling the gap (PCV group 2). Animals-large breed cadaveric canine cervical vertebral columns (C2-C7) from skeletally mature dogs without (cadaveric group 1, n = 6, historical data) and with an intervertebral disk spacer (cadaveric group 2, n = 6) were used. All PVC models and cadaver specimens were instrumented with monocortical titanium screws/PMMA. Stiffness of the 2 PVC groups was compared in extension, flexion, and lateral bending using non-destructive 4-point bend testing. Stiffness testing in all 3 directions was performed of the unaltered C4-C5 vertebral motion unit in cadaveric spines and repeated after placement of an intervertebral cortical allograft ring and instrumentation. Data were compared using a linear mixed model approach that also incorporated data from previously tested spines with the same screw/PMMA construct but without disk spacer (cadaveric group 1). RESULTS Addition of a spacer increased construct stiffness in both the PVC model (P < .001) and cadaveric vertebral columns (P < .001) compared to fixation without a spacer. CONCLUSIONS Addition of an intervertebral spacer significantly increased construct stiffness of monocortical screw/PMMA fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare biomechanical stiffness of cadaveric canine cervical spine constructs stabilized with bicortical stainless steel pins and polymethylmethacrylate (PMMA), monocortical stainless steel screws with PMMA, or monocortical titanium screws with PMMA. STUDY DESIGN Biomechanical cadaver study. ANIMALS Eighteen canine cervical vertebral columns (C2-C7) were collected from skeletally mature dogs (weighing 22-32 kg). METHODS Specimens were radiographed and examined by dual energy X-ray absorptiometry. Stiffness of the unaltered C4-C5 intervertebral motion unit was measured in extension, flexion and lateral bending using non-destructive 4-point bend testing. Specimens were then stabilized by (1) bicortical stainless steel pins/PMMA, (2) monocortical stainless steel screws/PMMA, or (3) monocortical titanium screws/PMMA. Mechanical testing was repeated and stiffness data from unaltered specimens and the 3 treatment groups were compared. RESULTS All 3 surgical methods significantly increased stiffness of the C4-C5 motion unit compared with the unaltered specimen (P < .001 for all treatments), but stiffness was not significantly different among the 3 fixation groups (P = .578). CONCLUSIONS In this model, monocortical screw fixation (with stainless steel or titanium screws) was biomechanically equivalent to bicortical fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To identify the influence of fixed prosthesis type on biologic and technical complication rates in the context of screw versus cement retention. Furthermore, a multivariate analysis was conducted to determine which factors, when considered together, influence the complication and failure rates of fixed implant-supported prostheses. MATERIALS AND METHODS Electronic searches of MEDLINE (PubMed), EMBASE, and the Cochrane Library were conducted. Selected inclusion and exclusion criteria were used to limit the search. Data were analyzed statistically with simple and multivariate random-effects Poisson regressions. RESULTS Seventy-three articles qualified for inclusion in the study. Screw-retained prostheses showed a tendency toward and significantly more technical complications than cemented prostheses with single crowns and fixed partial prostheses, respectively. Resin chipping and ceramic veneer chipping had high mean event rates, at 10.04 and 8.95 per 100 years, respectively, for full-arch screwed prostheses. For "all fixed prostheses" (prosthesis type not reported or not known), significantly fewer biologic and technical complications were seen with screw retention. Multivariate analysis revealed a significantly greater incidence of technical complications with cemented prostheses. Full-arch prostheses, cantilevered prostheses, and "all fixed prostheses" had significantly higher complication rates than single crowns. A significantly greater incidence of technical and biologic complications was seen with cemented prostheses. CONCLUSION Screw-retained fixed partial prostheses demonstrated a significantly higher rate of technical complications and screw-retained full-arch prostheses demonstrated a notably high rate of veneer chipping. When "all fixed prostheses" were considered, significantly higher rates of technical and biologic complications were seen for cement-retained prostheses. Multivariate Poisson regression analysis failed to show a significant difference between screw- and cement-retained prostheses with respect to the incidence of failure but demonstrated a higher rate of technical and biologic complications for cement-retained prostheses. The incidence of technical complications was more dependent upon prosthesis and retention type than prosthesis or abutment material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.