53 resultados para Conformal Field Models in String Theory
Resumo:
We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with N = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G2 holonomy at N = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.
Resumo:
BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
Resumo:
Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm−1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.
Resumo:
INTRODUCTION This paper focuses exclusively on experimental models with ultra high dilutions (i.e. beyond 10(-23)) that have been submitted to replication scrutiny. It updates previous surveys, considers suggestions made by the research community and compares the state of replication in 1994 with that in 2015. METHODS Following literature research, biochemical, immunological, botanical, cell biological and zoological studies on ultra high dilutions (potencies) were included. Reports were grouped into initial studies, laboratory-internal, multicentre and external replications. Repetition could yield either comparable, or zero, or opposite results. The null-hypothesis was that test and control groups would not be distinguishable (zero effect). RESULTS A total of 126 studies were found. From these, 28 were initial studies. When all 98 replicative studies were considered, 70.4% (i.e. 69) reported a result comparable to that of the initial study, 20.4% (20) zero effect and 9.2% (9) an opposite result. Both for the studies until 1994 and the studies 1995-2015 the null-hypothesis (dominance of zero results) should be rejected. Furthermore, the odds of finding a comparable result are generally higher than of finding an opposite result. Although this is true for all three types of replication studies, the fraction of comparable studies diminishes from laboratory-internal (total 82.9%) to multicentre (total 75%) to external (total 48.3%), while the fraction of opposite results was 4.9%, 10.7% and 13.8%. Furthermore, it became obvious that the probability of an external replication producing comparable results is bigger for models that had already been further scrutinized by the initial researchers. CONCLUSIONS We found 28 experimental models which underwent replication. In total, 24 models were replicated with comparable results, 12 models with zero effect, and 6 models with opposite results. Five models were externally reproduced with comparable results. We encourage further replications of studies in order to learn more about the model systems used.
Resumo:
The triggering mechanism and the temporal evolution of large flood events, especially of worst-case scenarios, are not yet fully understood. Consequently, the cumulative losses of extreme floods are unknown. To study the link between weather conditions, discharges and flood losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage models. The objective of the M-AARE project is to test the potentials and opportunities of a model chain that relates atmospheric conditions to flood losses or risks. The M-AARE model chain is a set of coupled models consisting of four main components: the precipitation module, the hydrology module, the hydrodynamic module, and the damage module. The models are coupled in a cascading framework with harmonized time-steps. First exploratory applications show that the one way coupling of the WRF-PREVAH-BASEMENT models has been achieved and provides promising new insights for a better understanding of key aspects in flood risk analysis.
Resumo:
We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.
Resumo:
We calculate the anomalous dimensions of operators with large global charge J in certain strongly coupled conformal field theories in three dimensions, such as the O(2) model and the supersymmetric fixed point with a single chiral superfield and a W = Φ3 superpotential. Working in a 1/J expansion, we find that the large-J sector of both examples is controlled by a conformally invariant effective Lagrangian for a Goldstone boson of the global symmetry. For both these theories, we find that the lowest state with charge J is always a scalar operator whose dimension ΔJ satisfies the sum rule J2ΔJ−(J22+J4+316)ΔJ−1−(J22+J4+316)ΔJ+1=0.04067 up to corrections that vanish at large J . The spectrum of low-lying excited states is also calculable explcitly: for example, the second-lowest primary operator has spin two and dimension ΔJ+3√. In the supersymmetric case, the dimensions of all half-integer-spin operators lie above the dimensions of the integer-spin operators by a gap of order J+12. The propagation speeds of the Goldstone waves and heavy fermions are 12√ and ±12 times the speed of light, respectively. These values, including the negative one, are necessary for the consistent realization of the superconformal symmetry at large J.