44 resultados para Blood gas
Resumo:
OBJECTIVE To determine the incidence of hypo- and hyper-capnia in a European cohort of ventilated newborn infants. DESIGN AND SETTING Two-point cross-sectional prospective study in 173 European neonatal intensive care units. PATIENTS AND METHODS Patient characteristics, ventilator settings and measurements, and blood gas analyses were collected for endotracheally ventilated newborn infants on two separate dates. RESULTS A total of 1569 blood gas analyses were performed in 508 included patients with a mean±SD Pco2 of 48±12 mm Hg or 6.4±1.6 kPa (range 17-104 mm Hg or 2.3-13.9 kPa). Hypocapnia (Pco2<30 mm Hg or 4 kPa) and hypercapnia (Pco2>52 mm Hg or 7 kPa) was present in, respectively, 69 (4%) and 492 (31%) of the blood gases. Hypocapnia was most common in the first 3 days of life (7.3%) and hypercapnia after the first week of life (42.6%). Pco2 was significantly higher in preterm infants (49 mm Hg or 6.5 kPa) than term infants (43 mm Hg or 5.7 kPa) and significantly lower during pressure-limited ventilation (47 mm Hg or 6.3±1.6 kPa) compared with volume-targeted ventilation (51 mm Hg or 6.8±1.7 kPa) and high-frequency ventilation (50 mm Hg or 6.7±1.7 kPa). CONCLUSIONS This study shows that hypocapnia is a relatively uncommon finding during neonatal ventilation. The higher incidence of hypercapnia may suggest that permissive hypercapnia has found its way into daily clinical practice.
Resumo:
REASONS FOR PERFORMING STUDY In clinical practice, veterinarians often depend on owner-reported signs to assess the clinical course of horses with recurrent airway obstruction (RAO). OBJECTIVES To test whether owner-reported information on frequency of coughing and observation of nasal discharge are associated with clinical, cytological and bronchoprovocation findings in RAO-affected horses in nonstandardised field conditions. STUDY DESIGN Cross-sectional study comparing healthy and RAO-affected horses. METHODS Twenty-eight healthy and 34 RAO-affected Swiss Warmblood horses were grouped according to owner-reported 'coughing frequency' and 'nasal discharge'. Differences between these groups were examined using clinical examination, blood gas analyses, endoscopic mucus scores, cytology of tracheobronchial secretion and bronchoalveolar lavage fluid, and airway hyperresponsiveness determined by plethysmography with histamine bronchoprovocation. RESULTS Frequently coughing horses differed most markedly from healthy control animals. Histamine bronchoprovocation-derived parameters were significantly different between the healthy control group and all RAO groups. Mucus grades and tracheobronchial secretion and bronchoalveolar lavage fluid neutrophil percentages had particularly high variability, with overlap of findings between groups. Owner satisfaction with the clinical status of the horse was high, even in severely affected horses. CONCLUSIONS Owner-reported coughing and nasal discharge are associated with specific clinical and diagnostic findings in RAO-affected horses in field settings. While airway hyperresponsiveness differentiates best between healthy horses and asymptomatic RAO-affected horses, the absence of coughing and nasal discharge does not rule out significant neutrophilic airway inflammation. Owner satisfaction with the clinical status of the horse was uninformative.
Resumo:
HISTORY AND CLINICAL FINDINGS A 54-year old man had suffered from advanced multiple myeloma for two years. After initially good response the myeloma was refractrory to treatment with dexamethasone, cyclophosphamide, bortezomibe, zoledronate and additionally doxorubicine. The patient then complained of dyspnea without clinical signs of cardiopulmonary disease. INVESTIGATIONS Arterial blood gas analysis showed hyperventilation with respiratory alkalosis and normal alveolo-arterial gradient as the reason for the dyspnea. With a normal MRI of the brain and lumbal puncture, a neurological disease could be excluded. Serum calcium, creatinine and serum viscosity were normal. Eventually, serum ammonia levels were found to be substantially elevated (144 µmol/l) and hyperammonemic encephalopathy was diagnosed. TREATMENT AND COURSE Therapy with bortezomib and high dose dexamethason was repeated, and the patient also received bendamustin. Despite this treatment, he lost consciousness and died after two weeks because of aspiration pneumonia. CONCLUSION The existence of respiratory alkalosis and multiple myeloma should prompt a search for hyperammonemia.
Resumo:
AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.
Resumo:
The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung.
Resumo:
Renal allograft donors are at risk of developing hypertension. Here, we hypothesized that this risk is at least in part explained by an enhanced intracellular availability of 11β-hydroxyglucocorticoids due to an increased 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1), an intracellular prereceptor activator of biologically inactive 11-ketocorticosteroids in the liver, and/or a diminished 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), an inactivator of 11β-hydroxyglucocorticoids in the kidney. To test this hypothesis, uninephrectomized (UNX) (n=9) and sham-operated (n=10) adult Sprague-Dawley rats were investigated. Mean arterial blood pressure and heart rate were measured continuously by telemetry for 6 days in week 5 after UNX. The mRNA of 11β-Hsd1 and 11β-Hsd2 in liver and kidney tissues were assessed by RT-PCR and the 11β-HSD activities were directly quantified in their corresponding tissues by determining the ratios of (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) and of corticosterone/dehydrocorticosterone (B/A) by gas chromatography-mass spectrometry. The apparent total body activities of 11β-HSD1 and 11β-HSD2 were estimated using the urinary and plasma ratios of (THB+5α-THB)/THA and B/A. Mean arterial blood pressure was increased after UNX when compared with sham operation. Hepatic mRNA content of 11β-Hsd1 and hepatic, plasma, and urinary ratios of (THB+5α-THB)/THA were decreased after UNX, indicating diminished access of glucocorticoids to its receptors. In renal tissue, 11β-Hsd2 mRNA was reduced and B/A ratios measured in kidney, plasma, and urine were increased, indicating reduced 11β-HSD2 activity and enhanced access of glucocorticoids to mineralocorticoid receptors. Both 11β-HSD1 and 11β-HSD2 are downregulated after UNX in rats, a constellation considered to induce hypertension.
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
BACKGROUND: The role of albumin on blood pressure response to different salt challenges is not known. Therefore, we studied the blood pressure response of analbuminemic Nagase rats (NAR) to different salt challenges. 11beta-Hydroxysteroid dehydrogenase type 2 (11beta-HSD2), the enzyme regulating the glucocorticoid access to the mineralocorticoid receptor, an enzyme that is decreased in humans with salt sensitive hypertension and other diseases with abnormal renal salt retention, was assessed during salt challenges. METHODS: Blood pressure was measured continuously by an intra-arterial catheter and a telemetry system in NAR (n = 8). NAR were set successively for 7 days on a normal (0.45% NaCl), high (8% NaCl), low (0.1% NaCl) and normal salt diet again, to assess salt related response in mean systolic (SBP) and diastolic blood pressure (DBP). 11beta-HSD2activity was assessed by measuring the urinary (THB + 5alpha-THB)/THA ratio with gas chromatography - mass spectrometry. RESULTS: Mean SBP and DBP increased with high salt intake (normal salt vs. high salt: SBP: 114 +/- 1 vs.119 +/- 3 mm Hg, p < 0.01; DBP: 84 +/- 1 vs. 88 +/- 3 mm Hg; n = 8; p < 0.01). Urinary (THB +5alpha-THB)/THA ratio increased during the high-salt period when compared to the normal-salt period (high salt vs. normal salt: 0.52 +/- 0.10 vs. 0.37 +/- 0.07; p = 0.05) indicating decreased 11beta-HSD2activity. CONCLUSION: Analbuminemic Nagase rats express increased blood pressure and reduced 11beta-HSD2 activity in response to a high-salt diet.
Resumo:
A 10-year-old, female West Highland white terrier was presented with poorly controlled diabetes mellitus and a previously undetected heart murmur. Emphysematous cystitis, emphysematous peritonitis and infective endocarditis of the tricuspid valve with gas accumulation were diagnosed with radiographs, including non-selective angiocardiography. The diagnoses were confirmed by post-mortem examination and positive cultures for Escherichia coli in blood, urine and tricuspid valve tissue samples.
Resumo:
This study describes the development and validation of a gas chromatography-mass spectrometry (GC-MS) method to identify and quantitate phenytoin in brain microdialysate, saliva and blood from human samples. A solid-phase extraction (SPE) was performed with a nonpolar C8-SCX column. The eluate was evaporated with nitrogen (50°C) and derivatized with trimethylsulfonium hydroxide before GC-MS analysis. As the internal standard, 5-(p-methylphenyl)-5-phenylhydantoin was used. The MS was run in scan mode and the identification was made with three ion fragment masses. All peaks were identified with MassLib. Spiked phenytoin samples showed recovery after SPE of ≥94%. The calibration curve (phenytoin 50 to 1,200 ng/mL, n = 6, at six concentration levels) showed good linearity and correlation (r² > 0.998). The limit of detection was 15 ng/mL; the limit of quantification was 50 ng/mL. Dried extracted samples were stable within a 15% deviation range for ≥4 weeks at room temperature. The method met International Organization for Standardization standards and was able to detect and quantify phenytoin in different biological matrices and patient samples. The GC-MS method with SPE is specific, sensitive, robust and well reproducible, and is therefore an appropriate candidate for the pharmacokinetic assessment of phenytoin concentrations in different human biological samples.
Resumo:
In the last century, several mathematical models have been developed to calculate blood ethanol concentrations (BAC) from the amount of ingested ethanol and vice versa. The most common one in the field of forensic sciences is Widmark's equation. A drinking experiment with 10 voluntary test persons was performed with a target BAC of 1.2 g/kg estimated using Widmark's equation as well as Watson's factor. The ethanol concentrations in the blood were measured using headspace gas chromatography/flame ionization and additionally with an alcohol Dehydrogenase (ADH)-based method. In a healthy 75-year-old man a distinct discrepancy between the intended and the determined blood ethanol concentration was observed. A blood ethanol concentration of 1.83 g/kg was measured and the man showed signs of intoxication. A possible explanation for the discrepancy is a reduction of the total body water content in older people. The incident showed that caution is advised when using the different mathematical models in aged people. When estimating ethanol concentrations, caution is recommended with calculated results due to potential discrepancies between mathematical models and biological systems
Resumo:
The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.
Resumo:
A successful pregnancy requires an accommodating environment. Salt and water availability are critical for plasma volume expansion. Any changes in sodium intake would alter aldosterone, a hormone previously described beneficial in pregnancy. To date, it remains ambiguous whether high aldosterone or high salt intake is preferable. We hypothesized that increased aldosterone is a rescue mechanism and appropriate salt availability is equally effective in maintaining a normotensive blood pressure (BP) phenotype in pregnancy. We compared normotensive pregnant women (n=31) throughout pregnancy with young healthy female individuals (n=31–62) and performed salt sensitivity testing within the first trimester. Suppression of urinary tetrahydro-aldosterone levels by salt intake as measured by gas chromatography–mass spectrometry and urinary sodium excretion corrected for creatinine, respectively, was shifted toward a higher salt intake in pregnancy (P<0.0001). In pregnancy, neither high urinary tetrahydro-aldosterone nor sodium excretion was correlated with higher BP. In contrast, in nonpregnant women, systolic BP rose with aldosterone (P<0.05). Testing the impact of salt on BP, we performed salt sensitivity testing in a final cohort of 19 pregnant and 24 nonpregnant women. On salt loading, 24-hour mean arterial pressure rose by 3.6±1.5 and dropped by –2.8±1.5 mm Hg favoring pregnant women (P<0.01; χ2=6.04; P<0.02). Our data suggest first that salt responsiveness of aldosterone is alleviated in conditions of pregnancy without causing aldosterone-induced hypertension. Second, salt seems to aid in BP lowering in pregnancy for reasons incompletely elucidated, yet involving renin suppression and potentially placental sensing mechanisms. Further research should identify susceptible individuals and clarify effector mechanisms.
Resumo:
The anatomy of the domestic duck lung was studied macroscopically, by casting and by light, transmission, and scanning electron microscopy. The lung had four categories of secondary bronchi (SB), namely, the medioventral (MV, 4-5), laterodorsal (LD, 6-10), lateroventral (LV, 2-4), and posterior secondary bronchi (PO, 36-44). The neopulmonic parabronchi formed an intricate feltwork on the ventral third of the lung and inosculated those from the other SB. The lung parenchyma was organized into cylindrical parabronchi separated by thin septa containing blood vessels. Atria were shallow and well-fortified by epithelial ridges reinforced by smooth muscle bundles and gave rise to 2-6 elongate infundibulae. Air capillaries arose either directly from the atria or from infundibulae and were tubular or globular in shape with thin interconnecting branches. The newly described spatial disposition of the conducting air conduits closely resembles that of the chicken. This remarkable similarity between the categories, numbers, and 3D arrangement of the SB in the duck and chicken points to a convergence in function-oriented design. To illuminate airflow dynamics in the avian lung, precise directions of airflow in the various categories of SB and parabronchi need to be characterized.