145 resultados para Neonatal ventral hippocampus lesion
Resumo:
OBJECTIVE: To describe the most reliable insertion angle, corridor length and width to place a ventral transarticular atlantoaxial screw in miniature breed dogs. STUDY DESIGN: Retrospective CT imaging study. SAMPLE POPULATION: Cervical CT scans of toy breed dogs (n = 21). METHODS: Dogs were divided into 2 groups--group 1: no atlantoaxial abnormalities; group 2: atlantoaxial instability. Insertion angle in medial to lateral and ventral to dorsal direction was measured in group 1. Corridor length and width were measured in groups 1 and 2. Corridor width was measured at 3 points of the corridor. Each variable was measured 3 times and the mean used for statistical analysis. RESULTS: Mean +/- SD optimal transarticular atlantoaxial insertion angle was determined to be 40 +/- 1 degrees in medial to lateral direction from the midline and 20 +/- 1 degrees in ventral to dorsal direction from the floor of the neural canal of C2. Mean corridor length was 7 mm (range, 4.5-8.0 mm). Significant correlation was found between corridor length, body weight, and age. Mean bone corridor width ranged from 3 to 5 mm. Statistically significant differences were found between individuals, gender and measured side. CONCLUSIONS: Optimal placement of a transarticular screw for atlantoaxial joint stabilization is very demanding because the screw path corridor is very narrow.
Resumo:
OBJECTIVE: To evaluate fixation properties of a new intervertebral anchored fusion device and compare these with ventral locking plate fixation. STUDY DESIGN: In vitro biomechanical evaluation. ANIMALS: Cadaveric canine C4-C7 cervical spines (n = 9). METHODS: Cervical spines were nondestructively loaded with pure moments in a nonconstraining testing apparatus to induce flexion/extension while angular motion was measured. Range of motion (ROM) and neutral zone (NZ) were calculated for (1) intact specimens, (2) specimens after discectomy and fixation with a purpose-built intervertebral fusion cage with integrated ventral fixation, and (3) after removal of the device and fixation with a ventral locking plate. RESULTS: Both fixation techniques resulted in a decrease in ROM and NZ (P < .001) compared with the intact segments. There were no significant differences between the anchored spacer and locking plate fixation. CONCLUSION: An anchored spacer appears to provide similar biomechanical stability to that of locking plate fixation.
Resumo:
BACKGROUND From January 2011 onward, the Swiss newborn screening (NBS) program has included a test for cystic fibrosis (CF). In this study, we evaluate the first year of implementation of the CF-NBS program. METHODS The CF-NBS program consists of testing in two steps: a heel prick sample is drawn (= Guthrie test) for measurement of immunoreactive trypsinogen (IRT) and for DNA screening. All children with a positive screening test are referred to a CF center for further diagnostic testing (sweat test and genetic analysis). After assessment in the CF center, the parents are given a questionnaire. All the results of the screening process and the parent questionnaires were centrally collected and evaluated. RESULTS In 2011, 83 198 neonates were screened, 84 of whom (0.1%) had a positive screening result and were referred to a CF center. 30 of these 84 infants were finally diagnosed with CF (positive predictive value: 35.7%). There was an additional infant with CF and meconium ileus whose IRT value was normal. The 31 diagnosed children with CF correspond to an incidence of 1 : 2683. The average time from birth to genetically confirmed diagnosis was 34 days (range: 13-135). 91% of the parents were satisfied that their child had undergone screening. All infants receiving a diagnosis of CF went on to receive further professional care in a CF center. CONCLUSION The suggested procedure for CF-NBS has been found effective in practice; there were no major problems with its implementation. It reached high acceptance among physicians and parents.
Resumo:
Glucocorticoids are often applied in neonatology and perinatology to fight the problems of respiratory distress and chronic lung disease. There are, however, many controversies regarding the adverse side effects and long-term clinical benefits of this therapeutic approach. In rats, glucocorticoids are known to seriously impair the formation of alveoli when applied during the first two postnatal weeks even at very low dosage. The current study investigates short-term and long-term glucocorticoid effects on the rat lung by means of morphologic and morphometric observations at light and electron microscopic levels. Application of a high-dosage protocol for only few days resulted in a marked acceleration of lung development with a precocious microvascular maturation resulting in single capillary network septa in the first 4 postnatal days. By postnatal d 10, the lung morphologic phenotype showed a step back in the maturational state, with an increased number of septa with double capillary layer, followed by an exceptional second round of the alveolarization process. As a result of this process, there was an almost complete recovery in the parenchymal lung structure by postnatal d 36, and by d 60, there were virtually no qualitative or quantitative differences between experimental and control rats. These findings indicate that both dosage and duration of glucocorticoid therapy in the early postnatal period are very critical with respect to lung development and maturation and that a careful therapeutic strategy can minimize late sequelae of treatment.
Resumo:
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson's disease.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance.
Resumo:
Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.