28 resultados para water-soluble compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol samples were collected in Zurich, Switzerland, at an urban background site and were analyzed with size exclusion chromatography (SEC) and laser/desorption ionization mass spectrometry (LDI-MS) for water-soluble organic compounds with high molecular weight. Daily samples were collected during two campaigns in winter and summer, for 1 month each. The concentration of high-molecular-weight compounds (humic-like substances (HULIS)) was between 0.4 and 4 μg/m3 in winter and summer. The most intense signals in the LDI-MS mass spectra were measured between m/z150 and 500, comparing well with the mode of the two main high mass peaks determined with SEC corresponding to masses between 200 and 600 Da. For the maximum molecular weight, however, different results were obtained by the two techniques: whereas a maximum molecular weight between 1300 and 3300 Da was found with SEC, hardly any peaks above m/z700 were measured with LDI-MS. During summer the maximum molecular weight of HULIS (determined with SEC) correlates positively with several parameters such as ozone and increased temperature indicative of enhanced atmospheric photo-oxidation. The HULIS concentration also correlates positively with the oxalic acid concentration in the particles. This suggests that HULIS are generated by secondary processes in summer. The lack of such correlations during winter suggests that other sources and processes might be important during colder seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures [1]. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. Herein, we demonstrate that designed molecule Py3 forms dimensionally - defined supramolecular assemblies under thermodynamic conditions in water [2]. To study Py3 self-assembly, we carried out whole set of spectroscopic and microscopic experiments. The factors influencing stability, morphology and behavior of «nanosheets» in multicomponent systems are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review article covers the synthetic strategies, structural aspects, and host-guest properties of ruthenium metalla-assemblies, with a special focus on their use as drug delivery vectors. The two-dimensional metalla-rectangles show interesting host-guest possibilities but seem less appropriate for being used as drug carriers. On the other hand, metalla-prisms allow encapsulation and possible targeted release of bioactive molecules and consequently show some potential as drug delivery vectors. The reactivity of these metalla-prisms can be fine-tuned to allow a fine control of the guest’s release. The larger metalla-cubes can be used to stabilize the formation of G-quadruplex DNA and can be used to encapsulate and release photoactive molecules such as porphins. These metalla-assemblies demonstrate great prospective in photodynamic therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water-soluble arene ruthenium complexes have been intensively studied as cytotoxic compounds for the last fifteen years, notably owing to the promising in vitro and in vivo evaluations of, respectively, RAPTA-C (η6-p-MeC6H4Pri)Ru(P-pta)Cl2 (pta = 1,3,5-triaza-7-phospha-tricyclo-[3.3.1.1]decane) from Dyson's laboratory, and the (η6-arene)Ru(en)Cl]+ (en = ethylenediamine, RAED) family of compounds from Sadler's laboratory. In this account we describe the discovery of thiolato-bridged dinuclear arene ruthenium complexes and highlight subsequent developments in the field, including their syntheses, structures, and the recent strategies for the design of thiolato-bridged dinuclear arene ruthenium bioconjugates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myelography is a nearly ninety-year-old method that has undergone a steady development from the introduction of water-soluble contrast agents to CT myelography. Since the introduction of magnetic resonance imaging into clinical routine in the mid-1980s, the role of myelography seemed to be constantly less important in spinal diagnostics, but it remains a method that is probably even superior to MRI for special clinical issues. This paper briefly summarizes the historical development of myelography, describes the technique, and discusses current indications like the detection of CSF leaks or cervical root avulsion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The highly cytotoxic diruthenium complex [(p-MeC(6)H(4)Pr(1))(2)Ru(2)(SC(6)H(4)-p-Me)(3)](+) (1), water-soluble as the chloride salt, is shown to efficiently catalyze oxidation of the thiols cysteine and glutathione to give the corresponding disulfides, which may explain its high in vitro anticancer activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The objective of our study was to establish a standardized procedure for postmortem whole-body CT-based angiography with lipophilic and hydrophilic contrast media solutions and to compare the results of these two methods. MATERIALS AND METHODS: Minimally invasive postmortem CT angiography was performed on 10 human cadavers via access to the femoral blood vessels. Separate perfusion of the arterial and venous systems was established with a modified heart-lung machine using a mixture of an oily contrast medium and paraffin (five cases) and a mixture of a water-soluble contrast medium with polyethylene glycol (PEG) 200 in the other five cases. Imaging was executed with an MDCT scanner. RESULTS: The minimally invasive femoral approach to the vascular system provided a good depiction of lesions of the complete vascular system down to the level of the small supplying vessels. Because of the enhancement of well-vascularized tissues, angiography with the PEG-mixed contrast medium allowed the detection of tissue lesions and the depiction of vascular abnormalities such as pulmonary embolisms or ruptures of the vessel wall. CONCLUSION: The angiographic method with a water-soluble contrast medium and PEG as a contrast-agent dissolver showed a clearly superior quality due to the lack of extravasation through the gastrointestinal vascular bed and the enhancement of soft tissues (cerebral cortex, myocardium, and parenchymal abdominal organs). The diagnostic possibilities of these findings in cases of antemortem ischemia of these tissues are not yet fully understood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central nervous system (CNS) is tightly sealed from the changeable milieu of blood by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). While the BBB is considered to be localized at the level of the endothelial cells within CNS microvessels, the BCSFB is established by choroid plexus epithelial cells. The BBB inhibits the free paracellular diffusion of water-soluble molecules by an elaborate network of complex tight junctions (TJs) that interconnects the endothelial cells. Combined with the absence of fenestrae and an extremely low pinocytotic activity, which inhibit transcellular passage of molecules across the barrier, these morphological peculiarities establish the physical permeability barrier of the BBB. In addition, a functional BBB is manifested by a number of permanently active transport mechanisms, specifically expressed by brain capillary endothelial cells that ensure the transport of nutrients into the CNS and exclusion of blood-borne molecules that could be detrimental to the milieu required for neural transmission. Finally, while the endothelial cells constitute the physical and metabolic barrier per se, interactions with adjacent cellular and acellular layers are prerequisites for barrier function. The fully differentiated BBB consists of a complex system comprising the highly specialized endothelial cells and their underlying basement membrane in which a large number of pericytes are embedded, perivascular antigen-presenting cells, and an ensheathment of astrocytic endfeet and associated parenchymal basement membrane. Endothelial cell morphology, biochemistry, and function thus make these brain microvascular endothelial cells unique and distinguishable from all other endothelial cells in the body. Similar to the endothelial barrier, the morphological correlate of the BCSFB is found at the level of unique apical tight junctions between the choroid plexus epithelial cells inhibiting paracellular diffusion of water-soluble molecules across this barrier. Besides its barrier function, choroid plexus epithelial cells have a secretory function and produce the CSF. The barrier and secretory function of the choroid plexus epithelial cells are maintained by the expression of numerous transport systems allowing the directed transport of ions and nutrients into the CSF and the removal of toxic agents out of the CSF. In the event of CNS pathology, barrier characteristics of the blood-CNS barriers are altered, leading to edema formation and recruitment of inflammatory cells into the CNS. In this review we will describe current knowledge on the cellular and molecular basis of the functional and dysfunctional blood-CNS barriers with focus on CNS autoimmune inflammation.