2 resultados para two-dimensional cubic-diamond-like lattice
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Monte Carlo simulations are used to study the effect of confinement on a crystal of point particles interacting with an inverse power law potential in d=2 dimensions. This system can describe colloidal particles at the air-water interface, a model system for experimental study of two-dimensional melting. It is shown that the state of the system (a strip of width D) depends very sensitively on the precise boundary conditions at the two ``walls'' providing the confinement. If one uses a corrugated boundary commensurate with the order of the bulk triangular crystalline structure, both orientational order and positional order is enhanced, and such surface-induced order persists near the boundaries also at temperatures where the system in the bulk is in its fluid state. However, using smooth repulsive boundaries as walls providing the confinement, only the orientational order is enhanced, but positional (quasi-) long range order is destroyed: The mean-square displacement of two particles n lattice parameters apart in the y-direction along the walls then crosses over from the logarithmic increase (characteristic for $d=2$) to a linear increase (characteristic for d=1). The strip then exhibits a vanishing shear modulus. These results are interpreted in terms of a phenomenological harmonic theory. Also the effect of incommensurability of the strip width D with the triangular lattice structure is discussed, and a comparison with surface effects on phase transitions in simple Ising- and XY-models is made
Resumo:
In this thesis we are presenting a broadly based computer simulation study of two-dimensional colloidal crystals under different external conditions. In order to fully understand the phenomena which occur when the system is being compressed or when the walls are being sheared, it proved necessary to study also the basic motion of the particles and the diffusion processes which occur in the case without these external forces. In the first part of this thesis we investigate the structural transition in the number of rows which occurs when the crystal is being compressed by placing the structured walls closer together. Previous attempts to locate this transition were impeded by huge hysteresis effects. We were able to determine the transition point with higher precision by applying both the Schmid-Schilling thermodynamic integration method and the phase switch Monte Carlo method in order to determine the free energies. These simulations showed not only that the phase switch method can successfully be applied to systems with a few thousand particles and a soft crystalline structure with a superimposed pattern of defects, but also that this method is way more efficient than a thermodynamic integration when free energy differences are to be calculated. Additionally, the phase switch method enabled us to distinguish between several energetically very similar structures and to determine which one of them was actually stable. Another aspect considered in the first result chapter of this thesis is the ensemble inequivalence which can be observed when the structural transition is studied in the NpT and in the NVT ensemble. The second part of this work deals with the basic motion occurring in colloidal crystals confined by structured walls. Several cases are compared where the walls are placed in different positions, thereby introducing an incommensurability into the crystalline structure. Also the movement of the solitons, which are created in the course of the structural transition, is investigated. Furthermore, we will present results showing that not only the well-known mechanism of vacancies and interstitial particles leads to diffusion in our model system, but that also cooperative ring rotation phenomena occur. In this part and the following we applied Langevin dynamics simulations. In the last chapter of this work we will present results on the effect of shear on the colloidal crystal. The shear was implemented by moving the walls with constant velocity. We have observed shear banding and, depending on the shear velocity, that the inner part of the crystal breaks into several domains with different orientations. At very high shear velocities holes are created in the structure, which originate close to the walls, but also diffuse into the inner part of the crystal.