5 resultados para time of simulation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.
Resumo:
Das Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) der Firma Aerodyne ist eine Weiterentwicklung des Aerodyne Aerosolmassenspektrometers (Q-AMS). Dieses ist gut charakterisiert und kommt weltweit zum Einsatz. Beide Instrumente nutzen eine aerodynamische Linse, aerodynamische Partikelgrößenbestimmung, thermische Verdampfung und Elektronenstoß-Ionisation. Im Gegensatz zum Q-AMS, wo ein Quadrupolmassenspektrometer zur Analyse der Ionen verwendet wird, kommt beim ToF-AMS ein Flugzeit-Massenspektrometer zum Einsatz. In der vorliegenden Arbeit wird anhand von Laborexperimenten und Feldmesskampagnen gezeigt, dass das ToF-AMS zur quantitativen Messung der chemischen Zusammensetzung von Aerosolpartikeln mit hoher Zeit- und Größenauflösung geeignet ist. Zusätzlich wird ein vollständiges Schema zur ToF-AMS Datenanalyse vorgestellt, dass entwickelt wurde, um quantitative und sinnvolle Ergebnisse aus den aufgenommenen Rohdaten, sowohl von Messkampagnen als auch von Laborexperimenten, zu erhalten. Dieses Schema basiert auf den Charakterisierungsexperimenten, die im Rahmen dieser Arbeit durchgeführt wurden. Es beinhaltet Korrekturen, die angebracht werden müssen, und Kalibrationen, die durchgeführt werden müssen, um zuverlässige Ergebnisse aus den Rohdaten zu extrahieren. Beträchtliche Arbeit wurde außerdem in die Entwicklung eines zuverlässigen und benutzerfreundlichen Datenanalyseprogramms investiert. Dieses Programm kann zur automatischen und systematischen ToF-AMS Datenanalyse und –korrektur genutzt werden.
Resumo:
This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.
Resumo:
Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.
Resumo:
The presented thesis revolves around the study of thermally-responsive PNIPAAm-based hydrogels in water/based environments, as studied by Fluorescence Correlation Spectroscopy (FCS).rnThe goal of the project was the engineering of PNIPAAm gels into biosensors. Specifically, a gamma of such gels were both investigated concerning their dynamics and structure at the nanometer scale, and their performance in retaining bound bodies upon thermal collapse (which PNIPAAm undergoes upon heating above 32 ºC).rnFCS’s requirements, as a technique, match the limitations imposed by the system. Namely, the need to intimately probe a system in a solvent, which was also fragile and easy to alter. FCS, on the other hand, both requires a fluid environment to work, and is based on the observation of diffusion of fluorescents at nanomolar concentrations. FCS was applied to probe the hydrogels on the nanometer size with minimal invasivity.rnVariables in the gels were addressed in the project including crosslinking degree; structural changes during thermal collapse; behavior in different buffers; the possibility of decreasing the degree of inhomogeneity; behavior of differently sized probes; and the effectiveness of antibody functionalization upon thermal collapse.rnThe evidenced results included the heightening of structural inhomogeneities during thermal collapse and under different buffer conditions; the use of annealing to decrease the inhomogeneity degree; the use of differently sized probes to address different length scale of the gel; and the successful functionalization before and after collapse.rnThe thesis also addresses two side projects, also carried forward via FCS. One, diffusion in inverse opals, produced a predictive simulation model for diffusion of bodies in confined systems as dependent on the bodies’ size versus the characteristic sizes of the system. The other was the observation of interaction of bodies of opposite charge in a water solution, resulting in a phenomenological theory and an evaluation method for both the average residence time of the different bodies together, and their attachment likelihood.