2 resultados para spinors
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.
Resumo:
Die Berechnung von experimentell überprüfbaren Vorhersagen aus dem Standardmodell mit Hilfe störungstheoretischer Methoden ist schwierig. Die Herausforderungen liegen in der Berechnung immer komplizierterer Feynman-Integrale und dem zunehmenden Umfang der Rechnungen für Streuprozesse mit vielen Teilchen. Neue mathematische Methoden müssen daher entwickelt und die zunehmende Komplexität durch eine Automatisierung der Berechnungen gezähmt werden. In Kapitel 2 wird eine kurze Einführung in diese Thematik gegeben. Die nachfolgenden Kapitel sind dann einzelnen Beiträgen zur Lösung dieser Probleme gewidmet. In Kapitel 3 stellen wir ein Projekt vor, das für die Analysen der LHC-Daten wichtig sein wird. Ziel des Projekts ist die Berechnung von Einschleifen-Korrekturen zu Prozessen mit vielen Teilchen im Endzustand. Das numerische Verfahren wird dargestellt und erklärt. Es verwendet Helizitätsspinoren und darauf aufbauend eine neue Tensorreduktionsmethode, die Probleme mit inversen Gram-Determinanten weitgehend vermeidet. Es wurde ein Computerprogramm entwickelt, das die Berechnungen automatisiert ausführen kann. Die Implementierung wird beschrieben und Details über die Optimierung und Verifizierung präsentiert. Mit analytischen Methoden beschäftigt sich das vierte Kapitel. Darin wird das xloopsnosp-Projekt vorgestellt, das verschiedene Feynman-Integrale mit beliebigen Massen und Impulskonfigurationen analytisch berechnen kann. Die wesentlichen mathematischen Methoden, die xloops zur Lösung der Integrale verwendet, werden erklärt. Zwei Ideen für neue Berechnungsverfahren werden präsentiert, die sich mit diesen Methoden realisieren lassen. Das ist zum einen die einheitliche Berechnung von Einschleifen-N-Punkt-Integralen, und zum anderen die automatisierte Reihenentwicklung von Integrallösungen in höhere Potenzen des dimensionalen Regularisierungsparameters $epsilon$. Zum letzteren Verfahren werden erste Ergebnisse vorgestellt. Die Nützlichkeit der automatisierten Reihenentwicklung aus Kapitel 4 hängt von der numerischen Auswertbarkeit der Entwicklungskoeffizienten ab. Die Koeffizienten sind im allgemeinen Multiple Polylogarithmen. In Kapitel 5 wird ein Verfahren für deren numerische Auswertung vorgestellt. Dieses neue Verfahren für Multiple Polylogarithmen wurde zusammen mit bekannten Verfahren für andere Polylogarithmus-Funktionen als Bestandteil der CC-Bibliothek ginac implementiert.