3 resultados para spherically invariant random process
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this thesis we consider systems of finitely many particles moving on paths given by a strong Markov process and undergoing branching and reproduction at random times. The branching rate of a particle, its number of offspring and their spatial distribution are allowed to depend on the particle's position and possibly on the configuration of coexisting particles. In addition there is immigration of new particles, with the rate of immigration and the distribution of immigrants possibly depending on the configuration of pre-existing particles as well. In the first two chapters of this work, we concentrate on the case that the joint motion of particles is governed by a diffusion with interacting components. The resulting process of particle configurations was studied by E. Löcherbach (2002, 2004) and is known as a branching diffusion with immigration (BDI). Chapter 1 contains a detailed introduction of the basic model assumptions, in particular an assumption of ergodicity which guarantees that the BDI process is positive Harris recurrent with finite invariant measure on the configuration space. This object and a closely related quantity, namely the invariant occupation measure on the single-particle space, are investigated in Chapter 2 where we study the problem of the existence of Lebesgue-densities with nice regularity properties. For example, it turns out that the existence of a continuous density for the invariant measure depends on the mechanism by which newborn particles are distributed in space, namely whether branching particles reproduce at their death position or their offspring are distributed according to an absolutely continuous transition kernel. In Chapter 3, we assume that the quantities defining the model depend only on the spatial position but not on the configuration of coexisting particles. In this framework (which was considered by Höpfner and Löcherbach (2005) in the special case that branching particles reproduce at their death position), the particle motions are independent, and we can allow for more general Markov processes instead of diffusions. The resulting configuration process is a branching Markov process in the sense introduced by Ikeda, Nagasawa and Watanabe (1968), complemented by an immigration mechanism. Generalizing results obtained by Höpfner and Löcherbach (2005), we give sufficient conditions for ergodicity in the sense of positive recurrence of the configuration process and finiteness of the invariant occupation measure in the case of general particle motions and offspring distributions.
Resumo:
The purpose of this doctoral thesis is to prove existence for a mutually catalytic random walk with infinite branching rate on countably many sites. The process is defined as a weak limit of an approximating family of processes. An approximating process is constructed by adding jumps to a deterministic migration on an equidistant time grid. As law of jumps we need to choose the invariant probability measure of the mutually catalytic random walk with a finite branching rate in the recurrent regime. This model was introduced by Dawson and Perkins (1998) and this thesis relies heavily on their work. Due to the properties of this invariant distribution, which is in fact the exit distribution of planar Brownian motion from the first quadrant, it is possible to establish a martingale problem for the weak limit of any convergent sequence of approximating processes. We can prove a duality relation for the solution to the mentioned martingale problem, which goes back to Mytnik (1996) in the case of finite rate branching, and this duality gives rise to weak uniqueness for the solution to the martingale problem. Using standard arguments we can show that this solution is in fact a Feller process and it has the strong Markov property. For the case of only one site we prove that the model we have constructed is the limit of finite rate mutually catalytic branching processes as the branching rate approaches infinity. Therefore, it seems naturalto refer to the above model as an infinite rate branching process. However, a result for convergence on infinitely many sites remains open.
Resumo:
In dieser Arbeit werden wir ein Modell untersuchen, welches die Ausbreitung einer Infektion beschreibt. Bei diesem Modell werden zunächst Partikel gemäß eines Poissonschen Punktprozesses auf der reellen Achse verteilt. Bis zu einem gewissen Punkt auf der reellen Achse sind alle Partikel von einer Infektion befallen. Während sich nicht infizierte Partikel nicht bewegen, folgen die infizierten Partikel den Pfaden von voneinander unabhängigen Brownschen Bewegungen und verbreitet die Infektion dabei an den Orten, welche sie betreten. Wenn sie dabei auf ein nicht infiziertes Partikel treffen, ist dieses von diesem Moment an auch infiziert und beginnt ebenfalls, dem Pfad einer Brownschen Bewegung zu folgen und die Infektion auszubreiten. Auf diese Art verschiebt sich nun der am weitesten rechts liegende Ort R_t, an dem die Infektion bereits verbreitet wurde. Wir werden mit Hilfe des subadditiven Ergodensatzes zeigen, dass sich dieser Ort mit linearer Geschwindigkeit fortbewegt. Ferner werden wir eine obere und eine untere Schranke für die Ausbreitungsgeschwindkeit angeben. Danach werden wir zeigen, dass der Prozess Regenerationszeiten hat, nämlich solche zufällige Zeiten, zu denen er eine Art Neustart unter speziellen Startbedingungen durchführt. Wir werden diese für eine weitere Charakterisierung der Ausbreitungsgeschwingkeit nutzen. Ferner erhalten wir durch die Regenerationszeiten auch einen Zentralen Grenzwertsatz für R_t und können zeigen, dass die Verteilung der infizierten Partikel aus Sicht des am weitesten rechts liegenden infizierten Ortes gegen eine invariante Verteilung konvergiert.