8 resultados para spectral spaces in MV-algebra

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Faktorisierungsmethode zur Erkennung von Inhomogenitäten der Leitfähigkeit in der elektrischen Impedanztomographie auf unbeschränkten Gebieten - speziell der Halbebene bzw. dem Halbraum - untersucht. Als Lösungsräume für das direkte Problem, d.h. die Bestimmung des elektrischen Potentials zu vorgegebener Leitfähigkeit und zu vorgegebenem Randstrom, führen wir gewichtete Sobolev-Räume ein. In diesen wird die Existenz von schwachen Lösungen des direkten Problems gezeigt und die Gültigkeit einer Integraldarstellung für die Lösung der Laplace-Gleichung, die man bei homogener Leitfähigkeit erhält, bewiesen. Mittels der Faktorisierungsmethode geben wir eine explizite Charakterisierung von Einschlüssen an, die gegenüber dem Hintergrund eine sprunghaft erhöhte oder erniedrigte Leitfähigkeit haben. Damit ist zugleich für diese Klasse von Leitfähigkeiten die eindeutige Rekonstruierbarkeit der Einschlüsse bei Kenntnis der lokalen Neumann-Dirichlet-Abbildung gezeigt. Die mittels der Faktorisierungsmethode erhaltene Charakterisierung der Einschlüsse haben wir in ein numerisches Verfahren umgesetzt und sowohl im zwei- als auch im dreidimensionalen Fall mit simulierten, teilweise gestörten Daten getestet. Im Gegensatz zu anderen bekannten Rekonstruktionsverfahren benötigt das hier vorgestellte keine Vorabinformation über Anzahl und Form der Einschlüsse und hat als nicht-iteratives Verfahren einen vergleichsweise geringen Rechenaufwand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Goldfisch besitzt, im Gegensatz zum Menschen, ein tetrachromatisches Farbensehsystem, das außerordentlich gut untersucht ist. Die Farben gleicher Helligkeit lassen sich hier in einem dreidimensionalen Tetraeder darstellen. Ziel der vorliegenden Arbeit war es herauszufinden, wie gut der Goldfisch Farben, die dem Menschen ungesättigt erscheinen und im Inneren des Farbtetraeders liegen, unterscheiden kann. Des Weiteren stellte sich die Frage, ob sowohl „Weiß“ (ohne UV) als auch Xenonweiß (mit UV) vom Fisch als „unbunt“ oder „neutral“ wahrgenommenen werden. Um all dies untersuchen zu können, musste ein komplexer Versuchsaufbau entwickelt werden, mit dem den Fischen monochromatische und mit Weiß gemischte Lichter gleicher Helligkeit, sowie Xenonweiß gezeigt werden konnte. Die Fische erlernten durch operante Konditionierung einen Dressurstimulus (monochromatisches Licht der Wellenlängen 660 nm, 599 nm, 540 nm, 498 nm oder 450 nm) von einem Vergleichsstimulus (Projektorweiß) zu unterscheiden. Im Folgenden wurde dem Vergleichstimulus in 10er-Schritten immer mehr der jeweiligen Dressurspektralfarbe beigemischt, bis die Goldfische keine sichere Wahl für den Dressurstimulus mehr treffen konnten. Die Unterscheidungsleistung der Goldfische wurde mit zunehmender Beimischung von Dressurspektralfarbe zum Projektorweiß immer geringer und es kristallisierte sich ein Bereich in der Grundfläche des Tetraeders heraus, in dem die Goldfische keine Unterscheidung mehr treffen konnten. Um diesen Bereich näher zu charakterisieren, bekamen die Goldfische Mischlichter, bei denen gerade keine Unterscheidung mehr zum Projektorweiß möglich war, in Transfertests gezeigt. Da die Goldfische diese Mischlichter nicht voneinander unterscheiden konnten, läßt sich schließen, dass es einen größeren Bereich gibt, der, ebenso wie Weiß (ohne UV) für den Goldfisch „neutral“ erscheint. Wenn nun Weiß (ohne UV) für den Goldfisch „neutral“ erscheint, sollte es dem Xenonweiß ähnlich sein. Die Versuche zeigten allerdings, dass die Goldfische die Farben Weiß (ohne UV) und Xenonweiß als verschieden wahrnehmen. Betrachtet man die Sättigung für die Spektralfarben, so zeigte sich, dass die Spektralfarbe 540 nm für den Goldfisch am gesättigsten, die Spektralfarbe 660 nm am ungesättigsten erscheint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopy of the 1S-2S transition of antihydrogen confined in a neutral atom trap and comparison with the equivalent spectral line in hydrogen will provide an accurate test of CPT symmetry and the first one in a mixed baryon-lepton system. Also, with neutral antihydrogen atoms, the gravitational interaction between matter and antimatter can be tested unperturbed by the much stronger Coulomb forces.rnAntihydrogen is regularly produced at CERN's Antiproton Decelerator by three-body-recombination (TBR) of one antiproton and two positrons. The method requires injecting antiprotons into a cloud of positrons, which raises the average temperature of the antihydrogen atoms produced way above the typical 0.5 K trap depths of neutral atom traps. Therefore only very few antihydrogen atoms can be confined at a time. Precision measurements, like laser spectroscopy, will greatly benefit from larger numbers of simultaneously trapped antihydrogen atoms.rnTherefore, the ATRAP collaboration developed a different production method that has the potential to create much larger numbers of cold, trappable antihydrogen atoms. Positrons and antiprotons are stored and cooled in a Penning trap in close proximity. Laser excited cesium atoms collide with the positrons, forming Rydberg positronium, a bound state of an electron and a positron. The positronium atoms are no longer confined by the electric potentials of the Penning trap and some drift into the neighboring cloud of antiprotons where, in a second charge exchange collision, they form antihydrogen. The antiprotons remain at rest during the entire process, so much larger numbers of trappable antihydrogen atoms can be produced. Laser excitation is necessary to increase the efficiency of the process since the cross sections for charge-exchange collisions scale with the fourth power of the principal quantum number n.rnThis method, named double charge-exchange, was demonstrated by ATRAP in 2004. Since then, ATRAP constructed a new combined Penning Ioffe trap and a new laser system. The goal of this thesis was to implement the double charge-exchange method in this new apparatus and increase the number of antihydrogen atoms produced.rnCompared to our previous experiment, we could raise the numbers of positronium and antihydrogen atoms produced by two orders of magnitude. Most of this gain is due to the larger positron and antiproton plasmas available by now, but we could also achieve significant improvements in the efficiencies of the individual steps. We therefore showed that the double charge-exchange can produce comparable numbers of antihydrogen as the TBR method, but the fraction of cold, trappable atoms is expected to be much higher. Therefore this work is an important step towards precision measurements with trapped antihydrogen atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmons in metal nanoparticles respond to changes in their local environment by a spectral shift in resonance. Here, the potential of plasmonic metal nanoparticles for label-free detection and observation of biological systems is presented. Comparing the material silver and gold concerning plasmonic sensitivity, silver nanoparticles exhibit a higher sensitivity but their chemical instability under light exposure limits general usage. A new approach combining results from optical dark-field microscopy and transmission electron microscopy allows localization and quantification of gold nanoparticles internalized into living cells. Nanorods exposing a negatively charged biocompatible polymer seem to be promising candidates to sense membrane fluctuations of adherent cells. Many small nanoparticles being specific sensing elements can build up a sensor for parallel analyte detection without need of labeling, which is easy to fabricate, re-usable, and has sensitivity down to nanomolar concentrations. Besides analyte detection, binding kinetics of various partner proteins interacting with one protein of interest are accessible in parallel. Gold nanoparticles are able to sense local oscillations in the surface density of proteins on a lipid bilayer, which could not be resolved so far. Studies on the fluorescently labeled system and the unlabeled system identify an influence of the label on the kinetics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.