4 resultados para simultaneous saccharification fermentation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
An accurate and sensitive species-specific GC-ICP-IDMS (gas chromatography inductively coupled plasma isotope dilution mass spectrometry) method for the determination of trimethyllead and a multi-species-specific GC-ICP-IDMS method for the simultaneous determination of trimethyllead, methylmercury, and butyltins in biological and environmental samples were developed. They allow the determination of corresponding elemental species down to the low ng g-1 range. The developed synthesis scheme for the formation of isotopically labeled Me3206Pb+ can be used for future production of this spike. The novel extraction technique, stir bar sorptive extraction (SBSE), was applied for the first time in connection with species-specific isotope dilution GC-ICP-MS for the determination of trimethyllead, methylmercury and butyltins. The results were compared with liquid-liquid extraction. The developed methods were validated by the analysis of certified reference materials. The liquid-liquid extraction GC-ICP-IDMS method was applied to seafood samples purchased from a supermarket. The methylated lead fraction in these samples, correlated to total lead, varied in a broad range of 0.01-7.6 %. On the contrary, the fraction of methylmercury is much higher, normally in the range of 80-98 %. The highest methylmercury content of up to 12 µg g-1 has been determined in shark samples, an animal which is at the end of the marine food chain, whereas in other seafood samples a MeHg+ content of less than 0.2 µg g-1 was found. Butyltin species could only be determined in samples, where anthropogenic contaminations must be assumed. This explains the observed broad variation of the butylated tin fraction in the range of <0.3-49 % in different seafood samples. Because all isotope-labelled spike compounds, except trimethyllead, are commercially available, the developed multi-species-specific GC-ICP-IDMS method has a high potential in future for routine analysis.
Resumo:
Das Wachstum von Milchsäurebakterien-Arten der Gattungen Lactobacillus, Pediococcus und Leuconostoc während der Weinfermentation kann durch die Bildung verschiedener Stoffwechselprodukte zu Weinfehlern führen. Um rechtzeitig Gegenmaßnahmen ergreifen zu können und einem Weinverderb vorzubeugen, bedarf es geeigneter Identifizierungsmethoden. Klassische mikrobiologische Methoden reichen oft nicht aus, um Mikroorganismen auf Art- und Stammniveau gezielt zu identifizieren. Wegen ihrer schnellen Durchführbarkeit und Zuverlässigkeit sind molekularbiologische Identifizierungsmethoden zur Kontrolle der mikrobiellen Flora während der Lebensmittelfermentierung in der heutigen Zeit unabdingbar. In der vorliegenden Forschungsarbeit wurden die 23S rRNA-Gensequenzen von neun Pediococcus-Typstämmen sequenziert, analysiert und phylogenetische Analysen durchgeführt. Zur Art-Identifizierung der Pediokokken wurden PCR-Primer generiert und ein Multiplex PCR System entwickelt, mit dem alle typischen Arten simultan in einer Reaktion nachgewiesen werden konnten. Die Ergebnisse der Multiplex PCR-Identifizierung von 62 Pediococcus-Stämmen aus Kulturensammlungen und 47 neu isolierten Stämmen aus Wein zeigten, dass einige Stämme unter falschen Artnamen hinterlegt waren, und dass P. parvulus im Weinanbaugebiet Rheinhessen weit verbreitet war. Die Fähigkeit der Pediococcus-Stämme zur Exopolysaccharid-Synthese wurde durch den Nachweis zweier Gene überprüft. Auf Basis der 23S rDNA-Sequenzen wurden rRNA-Sekundärstrukturen mit der neu entwickelten Software Structure Star generiert, die zum Auffinden von Zielbereichen für fluoreszenzmarkierte DNA-Sonden geeignet waren. Die Sequenzunterschiede zwischen den Pediococcus-Arten reichten aus, um zwei Gruppen durch Fluoreszenz in situ Hybridisierung differenzieren zu können. Die Verwendung unmarkierter Helfer-sonden verbesserte die Zugänglichkeit der Sonden an die rRNA, wodurch das Fluoreszenz-Signal verstärkt wurde. Um Milchsäurebakterien durch Denaturierende Gradienten Gel Elektrophorese differenzieren zu können, wurden Primer entwickelt, mit denen ein hochvariabler 23S rDNA-Bereich amplifiziert werden konnte. Die Nested Specifically Amplified Polymorphic DNA (nSAPD)-PCR wurde in der vorliegenden Arbeit zur Art- und Stamm-Differenzierung pro- und eukaryotischer Organismen angewandt. Es wurden vor allem weinrelevante Milchsäurebakterien der Gattungen Oenococcus, Lactobacillus, Pediococcus und Leuconostoc und Hefen der Gattungen Dekkera / Brettanomyces und Saccharomyces untersucht. Die Cluster-Analyse der Pediococcus-Typstämme führte zu einer unterschiedlichen Baum-Topologie im Vergleich zum phylogenetischen 23S rDNA-Stammbaum. Die Verwandtschaftsverhältnisse der untersuchten O. oeni-Stämme aus Starterkulturen konnten in Bezug auf eine frühere Cluster-Analyse reproduziert werden. Die Untersuchung von 40 B. bruxellensis-Stämmen aus rheinhessischen Weinproben zeigte eine Gruppierung der Stämme gemäß dem Ort der Probennahme. Beim Vergleich der Verwandtschaftsverhältnisse von Stämmen der Arten P. parvulus und B. bruxellensis, die aus denselben Weinproben isoliert wurden, konnte eine hohe Übereinstimmung der beiden Baum-Topologien beobachtet werden. Anhand der SAPD-PCR Untersuchung von Sekthefen aus Starterkulturen konnten alle Stämme der Art S. cerevisiae zugeordnet werden. Die nSAPD-PCR war darüber hinaus geeignet, um höhere Eukaryoten wie Weinreben zu differenzieren und es konnten die Verwandtschaftsverhältnisse von Mäusen und menschlichen Individuen durch Cluster-Analysen nachvollzogen werden. Mit Hilfe der Sequence Characterized Amplified Region (SCAR)-Technik wurden (n)SAPD-Marker in SCAR-Marker konvertiert. Die neu generierten SCAR-Primer konnten zur simultanen Art-Identifizierung von sieben weinschädlichen Milchsäurebakterien in einer Multiplex PCR erfolgreich eingesetzt werden. Die in dieser Arbeit entwickelten molekularbiologischen Identifizierungsmethoden können zum Beispiel in der mikrobiologischen Qualitätskontrolle Anwendung finden.
Resumo:
In NawaRo-Biogasanlagen (BGA) kann es durch das Angebot an leicht fermentierbaren Kohlenstoff¬quel¬len zu einer bakteriell bedingten Übersäuerung durch unerwünschte kurzkettige Fettsäuren kommen. Häufiger kommt es zur Akkumulation von Propionsäure. Methanogene Archaea können bei niedrigen pH-Werten nicht mehr wachsen. Somit kann der gesamte Prozess der mikrobiellen Bildung von Biogas zum Erliegen kom¬men, was für die Biogasbetreiber zu erheblichen finanziellen Verlusten führt. Das Ziel dieser Disserta¬tion war die Aufklärung der anaeroben bakteriellen Population, die in Biogasanlagen Propionsäure ab¬bauen kann. Aus Propionat entsteht dabei Acetat und Wasserstoff. Da dieser anaerobe Prozess endergon verläuft, kann Propionsäure anaerob nur abgebaut werden, wenn der Wasserstoffpartialdruck niedrig ge¬halten wird. Diese Aufgabe erfüllen in Biogasanalgen methanogene Archaea. Die sog. sekundären Gärer leben somit in synthropher Kultur mit methanogenen Archaea.rnIn dieser Arbeit wurden die Mikroorganismen von Propionsäure-abbauenden Anreicherungskulturen aus vier NawaRo-BGA‘s identifiziert und ihr Substrat- und Produktspektrum analysiert. Die Anreicherungskul¬turen wurden vom Prüf- und Forschungsinstitut e. V. in Pirmasens zur Verfügung gestellt. Durch Analyse der bakteriellen 16S rDNA-Sequenzen der erhaltenen stabilen Propionsäure-abbauenden Mischkulturen wurde gezeigt, dass sich unter den Bakterien hauptsächlich Verwandte von den Clostridiales, aber auch Bacteroides sp., δ-, ε- so¬wie γ-Proteobakterien, Spirochäten, Synergistales und ungewöhnlicher Weise auch Thermotogales befanden. Aus Propionsäure-abbauenden Mischkulturen und aus Fermentern mesophiler NawaRo-Biogasanlagen wurden anaerobe Bakterien und methanogene Archaea angereichert und isoliert. Es wurden aus den Propionsäure-abbauenden Mischkulturen Stämme in Reinkultur erhalten, die entsprechend der 16S rDNA-Analyse als Clostridium sartagoforme Stamm Ap1a520 und Proteiniphilum acetatigenes Stamm Fp1a520 identifiziert wurden. Sowohl aus Fermentern und Nachgärern von drei NawaRo-BGA‘s als auch aus zwei Laborfermentern des Leibniz-Instituts für Agrartechnik in Potsdam-Bornim e.V. (ATB) wurden Reinkulturen von methanogenen Archaea erhalten. Diese konnten den Species Methanobacterium formicicum, Metha¬noculleus bourgensis, Methanosarcina barkeri, Methanosarcina mazei, Methanosarcina sp., Methanosaeta concilii und Methanomethylovorans sp. zugeordnet werden. Damit wurden in dieser Arbeit unter anderem die typischen bisher nur durch molekularbiologische Methoden identifizierten Species methanogener Ar¬chaea aus unterschiedlichen Fermentern in Reinkultur erhalten. Dabei wurde gezeigt, dass die specifically amplified polymorphic DNA-PCR (SAPD-PCR) eine geeignete Methode darstellt, Stämme der gleichen Art methanogener Archaea voneinander zu unterscheiden. Die Methanproduktion der kultivierten methanoge¬nen Archaea wurde gaschromatographisch analysiert. Es zeigte sich, dass die hydrogenotrophe Metha¬nogenese der effizientere und ergiebigere Weg zur Bildung von Methan ist. Mit der Bestimmung der Zellzahl des Isolates Methanoculleus bourgensis Stamm TAF1.1 bei gleichzeitiger Messung der Methanbildung wurde gezeigt, dass die Methanbildung nicht zwangsläufig mit dem Wachstum korreliert. Ne-ben Pflanzenfasern beinhalteten das hergestellte Reaktorfiltrat in den Kultivierungsansätzen Acetat, die essentielle Aminosäure Valin und den Zuckeralkohol Glycerol. Gezielte Misch¬kul¬turen von sekundären Gärern mit methanogenen Isolaten ergaben einen fördernden Einfluss auf diese Bak¬terien durch hydrogenotrophe Archaea. Diese Bakterien bauten Substrate ab oder bildeten Produkte, die sie unter den gegebenen Bedingungen ohne hydrogenotrophe Archaea nicht umsetzen konnten.
Resumo:
Hefen der Gattung Saccharomyces und Milchsäurebakterien sind bei der Weinbereitung von besonderer Bedeutung. Neben der alkoholischen Gärung sind Hefen an der Ausbildung von Aromastoffen beteiligt. Milchsäurebakterien spielen eine Rolle beim biologischen Säureabbau (malolaktische Fermentation), können jedoch aufgrund ihrer Stoffwechseleigenschaft weitere Aromamodifikationen bewirken. Die Zusammensetzung der mikrobiellen Flora zu verschiedenen Zeitpunkten der Weinbereitung hat einen direkten Einfluss auf die Qualität der Weine, welche sich sowohl positiv als auch negativ verändern kann. Daher ist die zuverlässige Identifizierung und Differenzierung verschiedener Mikroorganismen auf Art- aber auch Stamm-Ebene während der Vinifikation von Bedeutung.rnDer erste Teil dieser Arbeit beschäftigte sich mit der Differenzierung von Hefearten der Gattung Saccharomyces, welche mit Hilfe konventioneller Methoden nicht eindeutig identifiziert werden können. Unter Verwendung des DNA-Fingerprintverfahrens Specifically Amplified Polymorphic DNA (SAPD)-PCR sowie der Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight-Mass-Spectrometry (MALDI-TOF-MS) war eine Differenzierung dieser taxonomisch sehr nah verwandten Arten möglich. Weiterhin konnten interspezifische Hybridstämme detektiert werden. In diesem Zusammenhang wurde der Hybridcharakter des Stammes NCYC 3739 (S. cerevisiae x kudriavzevii) entdeckt. Um die Elternspezies eines Hybridstamms zuverlässig zu bestimmen, sind weiterführende Genanalysen notwendig. Hierzu konnte eine Restriktionsfragmentlängenpolymorphismus (RFLP)-Analyse verschiedener genetischer Marker erfolgreich herangezogen werden.rnIm Rahmen dieser Arbeit wurde weiterhin ein Schnellidentifizierungssystem zum Nachweis weinrelevanter Milchsäurebakterien entwickelt. Mit Hilfe der Sequence Characterized Amplified Region (SCAR)-Technik konnten artspezifische Primer generiert werden, welche auf der Grundlage charakteristischer Fragmente der SAPD-PCR abgeleitet wurden. Durch die Anwendung dieser Primer in einer Multiplex-PCR-Reaktion war die Detektion verschiedener, einerseits häufig in Wein vorkommender und andererseits potentiell an der Ausbildung von Weinfehlern beteiligter Milchsäurebakterien-Arten möglich. Die ermittelte Nachweisgrenze dieser Methode lag mit 10^4 - 10^5 Zellen/ml im Bereich der Zelltiter, die in Most und Wein anzutreffen sind. Anhand der Untersuchung verschiedener Weinproben von Winzern in Rheinhessen wurde die Praxistauglichkeit dieser Methode demonstriert. rnUm die gesamten Milchsäurebakterien-Population im Verlauf der Weinbereitung zu kontrollieren, kann die Denaturierende Gradienten-Gelelektrophorese herangezogen werden. Hierzu wurden in dieser Arbeit Primer zur Amplifikation eines Teilbereichs des rpoB-Gens abgeleitet, da dieses Gen eine Alternative zur 16S rDNA darstellt. Die DNA-Region erwies sich als geeignet, um zahlreiche weinrelevante Milchsäurebakterien-Arten zu differenzieren. In einigen ersten Versuchen konnte gezeigt werden, dass diese Methode für eine praktische Anwendung in Frage kommt.rnOenococcus oeni ist das wichtigste Milchsäurebakterien während der malolaktischen Fermentation und wird häufig in Form kommerzieller Starterkulturen eingesetzt. Da verschiedene Stämme unterschiedliche Eigenschaften aufweisen können, ist es von Bedeutung, die Identität eines bestimmten Stammes zweifelsfrei feststellen zu können. Anhand der Analyse verschiedener O. oeni-Stämme aus unterschiedlichen Weinbaugebieten konnte gezeigt werden, dass sowohl die nested SAPD-PCR als auch die MALDI-TOF-MS genügend Sensitivität aufweisen, um eine Unterscheidung auf Stamm-Ebene zu ermöglichen, wobei die mittels nSAPD-PCR ermittelten Distanzen der Stämme zueinander mit deren geographischer Herkunft korrelierte.rnDie in der vorliegenden Arbeit entwickelten Methoden können dazu beitragen, den Prozess der Weinherstellung besser zu kontrollieren und so eine hohe Qualität des Endproduktes zu gewährleisten.rn