9 resultados para simple systems
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
We investigate the statics and dynamics of a glassy,non-entangled, short bead-spring polymer melt with moleculardynamics simulations. Temperature ranges from slightlyabove the mode-coupling critical temperature to the liquidregime where features of a glassy liquid are absent. Ouraim is to work out the polymer specific effects on therelaxation and particle correlation. We find the intra-chain static structure unaffected bytemperature, it depends only on the distance of monomersalong the backbone. In contrast, the distinct inter-chainstructure shows pronounced site-dependence effects at thelength-scales of the chain and the nearest neighbordistance. There, we also find the strongest temperaturedependence which drives the glass transition. Both the siteaveraged coupling of the monomer and center of mass (CM) andthe CM-CM coupling are weak and presumably not responsiblefor a peak in the coherent relaxation time at the chain'slength scale. Chains rather emerge as soft, easilyinterpenetrating objects. Three particle correlations arewell reproduced by the convolution approximation with theexception of model dependent deviations. In the spatially heterogeneous dynamics of our system weidentify highly mobile monomers which tend to follow eachother in one-dimensional paths forming ``strings''. Thesestrings have an exponential length distribution and aregenerally short compared to the chain length. Thus, arelaxation mechanism in which neighboring mobile monomersmove along the backbone of the chain seems unlikely.However, the correlation of bonded neighbors is enhanced. When liquids are confined between two surfaces in relativesliding motion kinetic friction is observed. We study ageneric model setup by molecular dynamics simulations for awide range of sliding speeds, temperatures, loads, andlubricant coverings for simple and molecular fluids. Instabilities in the particle trajectories are identified asthe origin of kinetic friction. They lead to high particlevelocities of fluid atoms which are gradually dissipatedresulting in a friction force. In commensurate systemsfluid atoms follow continuous trajectories for sub-monolayercoverings and consequently, friction vanishes at low slidingspeeds. For incommensurate systems the velocity probabilitydistribution exhibits approximately exponential tails. Weconnect this velocity distribution to the kinetic frictionforce which reaches a constant value at low sliding speeds. This approach agrees well with the friction obtaineddirectly from simulations and explains Amontons' law on themicroscopic level. Molecular bonds in commensurate systemslead to incommensurate behavior, but do not change thequalitative behavior of incommensurate systems. However,crossed chains form stable load bearing asperities whichstrongly increase friction.
Resumo:
My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.
Effect of drug physicochemical properties on the release from liposomal systems in vitro and in vivo
Resumo:
Liposomes were discovered about 40 years ago by A. Bangham and since then they became very versatile tools in biology, biochemistry and medicine. Liposomes are the smallest artificial vesicles of spherical shape that can be produced from natural untoxic phospholipids and cholesterol. Liposome vesicles can be used as drug carriers and become loaded with a great variety of molecules, such as small drug molecules, proteins, nucleotides and even plasmids. Due to the variability of liposomal compositions they can be used for a large number of applications. In this thesis the β-adrenoceptor antagonists propranolol, metoprolol, atenolol and pindolol, glucose, 18F-Fluorodeoxyglucose (FDG) and Er-DTPA were used for encapsulation in liposomes, characterization and in vitro release studies. Multilamellar vesicles (MLV), large unilamellar vesicles (LUV) and smaller unilamellar vesicles (SUV) were prepared using one of the following lipids: 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC), Phospholipone 90H (Ph90H) or a mixture of DSPC and DMPC (1:1). The freeze thawing method was used for preparation of liposomes because it has three advantages (1) avoiding the use of chloroform, which is used in other methods and causes toxicity (2) it is a simple method and (3) it gives high entrapping efficiency. The percentage of entrapping efficiencies (EE) was different depending on the type and phase transition temperature (Tc) of the lipid used. The average particle size and particle size distribution of the prepared liposomes were determined using both dynamic light scattering (DLS) and laser diffraction analyzer (LDA). The average particle size of the prepared liposomes differs according to both liposomal type and lipid type. Dispersion and dialysis techniques were used for the study of the in vitro release of β-adrenoceptor antagonists. The in vitro release rate of β-adrenoceptor antagonists was increased from MLV to LUV to SUV. Regarding the lipid type, β-adrenoceptor antagonists exhibited different in vitro release pattern from one lipid to another. Two different concentrations (50 and 100mg/ml) of Ph90H were used for studying the effect of lipid concentration on the in vitro release of β-adrenoceptor antagonists. It was found that liposomes made from 50 mg/ml Ph90H exhibited higher release rates than liposomes made at 100 mg/ml Ph90H. Also glucose was encapsulated in MLV, LUV and SUV using 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC), Phospholipone 90H (Ph90H), soybean lipid (Syb) or a mixture of DSPC and DMPC (1:1). The average particle size and size distribution were determined using laser diffraction analysis. It was found that both EE and average particle size differ depending on both lipid and liposomal types. The in vitro release of glucose from different types of liposomes was performed using a dispersion method. It was found that the in vitro release of glucose from different liposomes is dependent on the lipid type. 18F-FDG was encapsulated in MLV 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), 1,2-Distearoyl-sn-Glycero-3-Phosphocholine (DSPC), Phospholipone 90H (Ph90H), soybean lipid (Syb) or a mixture of DSPC and DMPC (1:1). FDG-containing LUV and SUV were prepared using Ph90H lipid. The in vitro release of FDG from the different types of lipids was accomplished using a dispersion method. Results similar to that of glucose release were obtained. In vivo imaging of FDG in both uncapsulated FDG and FDG-containing MLV was performed in the brain and the whole body of rats using PET scanner. It was found that the release of FDG from FDG-containing MLV was sustained. In vitro-In vivo correlation was studied using the in vitro release data of FDG from liposomes and in vivo absorption data of FDG from injected liposomes using microPET. Erbium, which is a lanthanide metal, was used as a chelate with DTPA for encapsulation in SUV liposomes for the indirect radiation therapy of cancer. The liposomes were prepared using three different concentrations of soybean lipid (30, 50 and 70 mg/ml). The stability of Er-DTPA SUV liposomes was carried out by storage of the prepared liposomes at three different temperatures (4, 25 and 37 °C). It was found that the release of Er-DTPA complex is temperature dependent, the higher the temperature, the higher the release. There was an inverse relationship between the release of the Er-DTPA complex and the concentration of lipid.
Resumo:
In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems.rn rnIn the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2 - 24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. rnrnNew QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye complexes can also be easily transferred into water. Our approach can apply to not only dye molecules but also other organic molecules. As an example, the QDs have been complexed with calixarene molecules and the QD-calixarene complexes also have potential for QD-based energy transfer study. rn
Resumo:
In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.
Resumo:
Mit Hilfe von Molekulardynamik-Simulationen untersuchen wir bürstenartige Systeme unter guten Lösungsmittelbedingungen. Diese Systeme sind, dank ihren vielfältigen Beschaffenheiten, die von Molekularparametern und äußeren Bedingungen abhängig sind, wichtig für viele industrielle Anwendungen. Man vermutet, dass die Polymerbürsten eine entscheidende Rolle in der Natur wegen ihrer einzigartigen Gleiteigenschaften spielen. Ein vergröbertes Modell wird verwendet, um die strukturellen und dynamischen Eigenschaften zweier hochkomprimierter Polymerbürsten, die eine niedrige Reibung aufweisen, zu untersuchen. Allerdings sind die Lubrikationseigenschaften dieser Systeme, die in vielen biologischen Systemen vorhanden sind, beeinflußt. Wir untersuchen so-genannte "weiche Kolloide", die zwischen den beiden Polymerbürsten eingebettet sind, und wie diese Makroobjekte auf die Polymerbürsten wirken.rnrnNicht-Gleichgewichts-Molekulardynamik-Simulationen werden durchgeführt, in denen die hydrodynamischen Wechselwirkungen durch die Anwendung des DPD-Thermostaten mit expliziten Lösungsmittelmolekülen berücksichtigt werden. Wir zeigen, dass die Kenntnis der Gleichgewichtseigenschaften des Systems erlaubt, dynamische Nichtgleichgewichtsigenschaften der Doppelschicht vorherzusagen.rnrnWir untersuchen, wie die effektive Wechselwirkung zwischen kolloidalen Einschlüßen durch die Anwesenheit der Bürsten (in Abhängigkeit der Weichheit der Kolloide und der Pfropfdichte der Bürsten) beeinflußt wird. Als nächsten Schritt untersuchen wir die rheologische Antwort von solchen komplexen Doppelschichten auf Scherung. Wir entwickeln eine Skalen-Theorie, die die Abhängigkeit der makroskopischen Transporteigenschaften und der lateralen Ausdehnung der verankerten Ketten von der Weissenberg Zahl oberhalb des Bereichs, in dem die lineare Antwort-Theorie gilt, voraussagt. Die Vorhersagen der Theorie stimmen gut mit unseren und früheren numerischen Ergebnissen und neuen Experimenten überein. Unsere Theorie bietet die Möglichkeit, die Relaxationszeit der Doppelschicht zu berechnen. Wenn diese Zeit mit einer charakteristischen Längenskala kombiniert wird, kann auch das ''transiente'' (nicht-stationäre) Verhalten beschrieben werden.rnrnrnWir untersuchen die Antwort des Drucktensors und die Deformation der Bürsten während der Scherinvertierung für grosse Weissenberg Zahlen. Wir entwickeln eine Vorhersage für die charakteristische Zeit, nach der das System wieder den stationären Zustand erreicht.rnrnrnElektrostatik spielt eine bedeutende Rolle in vielen biologischen Prozessen. Die Lubrikationseigenschaften der Polymerbürsten werden durch die Anwesenheit langreichweitiger Wechselwirkungen stark beeinflusst. Für unterschiedliche Stärken der elektrostatischen Wechselwirkungen untersuchen wir rheologische Eigenschaften der Doppelschicht und vergleichen mit neutralen Systemen. Wir studieren den kontinuierlichen Übergang der Systemeigenschaften von neutralen zu stark geladenen Bürsten durch Variation der Bjerrumlänge und der Ladungsdichte.
Resumo:
In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.
Resumo:
Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn
Resumo:
Novel single step synthetic procedure for hydrophobically modified alkali soluble latexes (HASE) via a miniemulsion-analogous method is presented. This facile method simplifies the copolymerization of the monomers with basically “opposite” character in terms of their hydrophilic/hydrophobic nature, which represent one of the main challenges in water based systems. Considered systems do not represent classical miniemulsions due to a high content of water soluble monomers. However, the polymerization mechanism was found to be rather similar to miniemulsion polymerization process.rnThe influence of the different factors on the system stability has been investigated. The copolymerization behavior studies typically showed strong composition drifts during copolymerization. It was found that the copolymer composition drift can be suppressed via changing the initial monomer ratio.rnThe neutralization behavior of the obtained HASE systems was investigated via potentiometric titration. The rheological behavior of the obtained systems as a function of the different parameters, such as pH, composition (ultrahydrophobe content) and additive type and content has also been investigated.rnDetailed investigation of the storage and loss moduli, damping factor and the crossover frequencies of the samples showed that at the initial stages of the neutralization the systems show microgel-like behavior.rnThe dependence of the rheological properties on the content and the type of the ultrahydrophobe showed that the tuning of the mechanical properties can be easily achieved via minor (few percent) but significant changes in the content of the latter. Besides, changing the hydrophobicity of the ultrahydrophobe via increasing the carbon chain length represents another simple method for achieving the same results.rnThe influence of amphiphilic additives (especially alcohols) on the rheological behavior of the obtained systems has been studied. An analogy was made between micellation of surfactants and the formation of hydrophobic domains between hydrophobic groups of the polymer side chain.rnDilution induced viscosity reduction was investigated in different systems, without or with different amounts or types of the amphiphilic additive. Possibility of the controlled response to dilution was explored. It was concluded that the sensitivity towards dilution can be reduced, and in extreme cases even the increase of the dynamic modulus can be observed, which is of high importance for the setting behavior of the adhesive material.rnIn the last part of this work, the adhesive behavior of the obtained HASE systems was investigated on different substrates (polypropylene and glass) for the standard labeling paper. Wet tack and setting behavior was studied and the trends for possible applications have been evaluated.rnThe novel synthetic procedure, investigation of rheological properties and the possibility of the tuning via additives, investigated in this work create a firm background for the development of the HASE based adhesives as well as rheology modifiers with vast variety of possible applications due to ease of tuning the mechanical and rheological properties of the systems.