8 resultados para periodic second-order initial-value problems

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit befaßt sich mit einer Klasse von nichtlinearen Eigenwertproblemen mit Variationsstrukturin einem reellen Hilbertraum. Die betrachteteEigenwertgleichung ergibt sich demnach als Euler-Lagrange-Gleichung eines stetig differenzierbarenFunktionals, zusätzlich sei der nichtlineare Anteil desProblems als ungerade und definit vorausgesetzt.Die wichtigsten Ergebnisse in diesem abstrakten Rahmen sindKriterien für die Existenz spektral charakterisierterLösungen, d.h. von Lösungen, deren Eigenwert gerade miteinem vorgegeben variationellen Eigenwert eines zugehörigen linearen Problems übereinstimmt. Die Herleitung dieserKriterien basiert auf einer Untersuchung kontinuierlicher Familien selbstadjungierterEigenwertprobleme und erfordert Verallgemeinerungenspektraltheoretischer Konzepte.Neben reinen Existenzsätzen werden auch Beziehungen zwischenspektralen Charakterisierungen und denLjusternik-Schnirelman-Niveaus des Funktionals erörtert.Wir betrachten Anwendungen auf semilineareDifferentialgleichungen (sowieIntegro-Differentialgleichungen) zweiter Ordnung. Diesliefert neue Informationen über die zugehörigenLösungsmengen im Hinblick auf Knoteneigenschaften. Diehergeleiteten Methoden eignen sich besonders für eindimensionale und radialsymmetrische Probleme, während einTeil der Resultate auch ohne Symmetrieforderungen gültigist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fagin zeigt in seiner bahnbrechenden Arbeit, dass die Komplexitätsklasse NP mit der logischen Sprache 'existentielle Logik zweiter Ordnung' identifiziert werden kann. Ein einfaches und daher greifbares Fragment dieser Sprache ist monadic NP. Fagin bezeichnet monadic NP als '...training ground for attacking the problems in their full generality'. In dieser Arbeit werden zwei Arten von monadischen Erweiterungen von monadic NP untersucht. Der erste Teil beschäftigt sich mit schwachen built-in Relationen.Einebuilt-in Relation B heißt schwach, falls: monadic NP + B + polynomielles Padding neq NP.Es werden zwei neue Klassen schwacher built-in Relationen (unendlich teilbare-und verpackbare built-in Relationen) eingeführt. Hauptergebnis dieses Teils ist eine Klassifizierung aller bekannten schwachen built-in Relationen mittels dieser beiden Klassen. Im zweiten Teil dieser Arbeit werden monadische Abschlüsse von monadic NP betrachtet. Besonderes Interesse gilt dabei den positiven Abschluss erster Ordnung von monadic NP (kurz: PFO(monNP)). Hauptergebnis dieses Teils ist die Aussage, dass nicht-k-Färbbarkeit (k=>3) nicht ausdrückbar ist in PFO(monNP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit ist die Untersuchung der smektischen Phasen von Polysiloxanen mit flüssigkristallinen Seitengruppen (LC-Polysiloxane). Der erste Teil der vorliegenden Arbeit befasste sich mit der Herstellung verschiedener flüssigkristalliner ferroelektrischer Polysiloxane. Die Polymere wurden in Bezug auf das verwendete Polymerrückgrat (Homo- und Copolysiloxan) sowie durch den zusätzlichen Einbau von vernetzbaren Seitengruppen variiert. Im zweiten Teil der Arbeit wurden die Eigenschaften der smektischen Phasen der hergestellten Substanzen näher untersucht. Ein erster Untersuchungsgegenstand war das Dehnungsverhalten von freistehenden flüssigkristallinen Elastomerfilmen (LCE). Bei der Verwendung eines Polymers, in dem nur ein Teil des Polysiloxanrückgrats mit Seitengruppen substituiert ist, wird die uniaxiale Dehnung des Films parallel zu den smektischen Schichten durch eine gleichmäßige Kontraktion in der Filmebene und parallel zur Schichtnormalen ausgeglichen, was auf einen außergewöhnlich niedrigen smektischen Schichtkompressionsmodul zurückzuführen ist. Im Gegensatz dazu ist dieser Modul bei den Homopolymersystemen so groß, dass praktisch senkrecht zu den smektischen Schichten keine Kontraktion stattfindet. Ein zweiter Untersuchungsgegenstand der Netzwerkbildung bestand in der Bestimmung der dynamisch-mechanischen Eigenschaften der LC-Polysiloxane mittels eines Oszillationsrheometers. Hier erfolgten die Messungen von Speicher- und Verlustmodul in Abhängigkeit vom Polymerrückgrat und von der Vernetzung. Die unvernetzten Systeme zeigten in den smektischen Phasen (oberhalb Tg) noch – im wesentlichen – Festkörpereigenschaften (physikalische Vernetzung) mit einem dominierenden Speichermodul beim LC-Homopolysiloxan. Beim LC-Copolysiloxan haben beide Module eine gleiche Größenordnung. Am Phasenübergang in die isotrope Phase wurden beide Module absolut kleiner, der Verlustmodul aber relativ größer. In der isotropen Phase verhalten sich die LC-Polymere damit überwiegend wie viskose Schmelzen. Außerdem korrelierten die mittels DSC bestimmten Phasenübergangstemperaturen mit einer Änderung der dynamisch-mechanischen Eigenschaften. Nach der Vernetzung dominierte der Speichermodul sowohl beim LC-Homo- als auch beim LC-Copolysiloxan bis in die isotrope Phase, und es war aufgrund der Bildung einer festen Netzwerkstruktur keine Abhängigkeit der Module von Phasenübergängen mehr erkennbar. Als dritter Untersuchungsgegenstand wurde der Phasenübergang zwischen den beiden smektischen Phasen (SmC* nach SmA*) der flüssigkristallinen Polysiloxane näher behandelt. Als wichtigstes Ergebnis ist festzuhalten, dass die verdünnten LC-Polysiloxane an diesem Übergang fast keine Schichtdickenänderung aufweisen. Dazu wurde jeweils die röntgenographisch ermittelte Schichtdicke mit der aus den optischen Tiltwinkeln theoretisch berechneten Schichtdicke verglichen. Dadurch konnte gezeigt werden, dass sich die Phasenübergänge nach dem de Vries-Modell verhalten. Damit konnte zum ersten Mal an Polymersystemen ein de Vries-Verhalten nachgewiesen werden. Im Gegensatz dazu zeigte das Homopolysiloxan mit dem Dreiringmesogen beim Übergang von SmC* nach SmA* einen ausgeprägten Sprung in der Schichtdicke. Wie auch durch DSC-Messungen nachweisbar, lag ein Phasenübergang 1. Ordnung vor. Bei den LC-Copolysiloxanen liegt dagegen ein Phasenübergang 2. Ordnung vor. Schließlich wurde die Schichtdicke unter dem Einfluss der Vernetzung untersucht. Beim LC-Copolysiloxan mit dem Dreiringmesogen und einem Anteil an vernetzbaren Gruppen von 15 % wurde eine Stabilisierung der smektischen Phasen erreicht. Zum einen war die Änderung der Schichtdicke am SmC*-SmA*-Phasenübergang geringer im Vergleich zum unvernetzten System und zum anderen war noch 50 °C über der ursprünglichen Klärtemperatur eine smektische Schichtstruktur röntgenographisch nachzuweisen. Insgesamt ist es mit den verschiedenen Untersuchungsmethoden gelungen, einen systematischen Unterschied zwischen smektischen Homo- und Copolysiloxanen aufzuzeigen, der seinen Ursprung – aller Wahrscheinlichkeit nach – in der Mikrophasenseparation von Mesogenen und Polysiloxanketten findet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In this work, the DPT treatment is extended to the next order (DPT4). It is demonstrated that the DPT4 correction can be obtained as a second derivative of the energy with respect to the relativistic perturbation parameter. Accordingly, differentiation of a suitable Lagrangian, thereby taking into account all constraints on the wave function, provides analytic expressions for the fourth-order energy corrections. The latter have been implemented at the Hartree-Fock level and within second-order Møller-Plesset perturbaton theory using standard analytic second-derivative techniques into the CFOUR program package. For closed-shell systems, the DPT4 corrections consist of higher-order scalar-relativistic effects as well as spin-orbit corrections with the latter appearing here for the first time in the DPT series.Relativistic corrections are reported for energies as well as for first-order electrical properties and compared to results from rigorous four-component benchmark calculations in order to judge the accuracy and convergence of the DPT expansion for both the scalar-relativistic as well as the spin-orbit contributions. Additionally, the importance of relativistic effects to the bromine and iodine quadrupole-coupling tensors is investigated in a joint experimental and theoretical study concerning the rotational spectra of CH2BrF, CHBrF2, and CH2FI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.