3 resultados para nanotoxicity

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mit der Zielsetzung der vorliegenden Arbeit wurde die detailierten Analyse von Migrationsdynamiken epithelilaler Monolayer anhand zweier neuartiger in vitro Biosensoren verfolgt, der elektrischen Zell-Substrat Impedanz Spektroskopie (electrical cell-substrate impedance sensing, ECIS) sowie der Quarz Kristall Mikrowaage (quartz crystal microbalance, QCM). Beide Methoden erwiesen sich als sensitiv gegenüber der Zellmotilität und der Nanozytotoxizität.rnInnerhalb des ersten Projektes wurde ein Fingerprinting von Krebszellen anhand ihrer Motilitätsdynamiken und der daraus generierten elektrischen oder akkustischen Fluktuationen auf ECIS oder QCM Basis vorgenommen; diese Echtzeitsensoren wurdene mit Hilfe klassicher in vitro Boyden-Kammer Migrations- und Invasions-assays validiert. Fluktuationssignaturen, also Langzeitkorrelationen oder fraktale Selbstähnlichkeit aufgrund der kollektiven Zellbewegung, wurden über Varianz-, Fourier- sowie trendbereinigende Fluktuationsanalyse quantifiziert. Stochastische Langzeitgedächtnisphänomene erwiesen sich als maßgebliche Beiträge zur Antwort adhärenter Zellen auf den QCM und ECIS-Sensoren. Des weiteren wurde der Einfluss niedermolekularer Toxine auf die Zytoslelettdynamiken verfolgt: die Auswirkungen von Cytochalasin D, Phalloidin und Blebbistatin sowie Taxol, Nocodazol und Colchicin wurden dabei über die QCM und ECIS Fluktuationsanalyse erfasst.rnIn einem zweiten Projektschwerpunkt wurden Adhäsionsprozesse sowie Zell-Zell und Zell-Substrat Degradationsprozesse bei Nanopartikelgabe charackterisiert, um ein Maß für Nanozytotoxizität in Abhangigkeit der Form, Funktionalisierung Stabilität oder Ladung der Partikel zu erhalten.rnAls Schlussfolgerung ist zu nennen, dass die neuartigen Echtzeit-Biosensoren QCM und ECIS eine hohe Zellspezifität besitzen, auf Zytoskelettdynamiken reagieren sowie als sensitive Detektoren für die Zellvitalität fungieren können.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymere Nanopartikel sind kleine Teilchen, die vielseitige Einsatzmöglichkeiten für den Transport von Wirkstoffen bieten. Da Nanomaterialien in diesen biomedizinischen Anwendungen oft mit biologischen Systemen in Berührung kommen, erfordert das eine genaue Untersuchung ihrer gegenseitigen Wechselwirkungen. In diesem speziellen Forschungsgebiet, welches sich auf die Interaktionen von Nanomaterialien mit biologischen Komponenten konzentriert, wurde bereits eine Vielzahl verschiedener Nanopartikel-Zell-Interaktionen (z. B. Nanotoxizität, Wirkstofftransport-mechanismen) analysiert. Bezüglich der Untersuchungen zu nanopartikulären Wirkstofftransport-mechanismen ist es im Allgemeinen akzeptiert, dass ein erfolgreicher zellulärer Transport hauptsächlich von der Aufnahme des Nanotransporters abhängt. Deshalb analysieren wir in dieser Arbeit (1) den Wirkstofftransportmechanismus für biologisch-abbaubare eisenhaltige Poly-L-Milchsäure Nanopartikel (PLLA-Fe-PMI) sowie (2) die Aufnahmemechanismen und die intrazellulären Transportwege von nicht-abbaubaren superparamagnetischen Polystyrolnanopartikeln (SPIOPSN). rnIn dieser Arbeit identifizieren wir einen bisher unbekannten und nicht-invasiven Wirkstoff-transportmechanismus. Dabei zeigt diese Studie, dass der subzelluläre Transport der nanopartikulärer Fracht nicht unbedingt von einer Aufnahme der Nanotransporter abhängt. Der identifizierte Arzneimitteltransportmechanismus basiert auf einem einfachen physikochemischen Kontakt des hydrophoben Poly-L-Milchsäure-Nanopartikels mit einer hydrophoben Oberfläche, wodurch die Freisetzung der nanopartikulären Fracht ausgelöst wird. In Zellexperimenten führt die membranvermittelte Freisetzung der nanopartikulären Fracht zu ihrem sofortigen Transport in TIP47+- und ADRP+- Lipidtröpfchen. Der Freisetzungsmechanismus („kiss-and-run") kann durch die kovalente Einbindung des Frachtmoleküls in das Polymer des Nanopartikels blockiert werden.rnWeiterhin wird in Langzeitversuchen gezeigt, dass die Aufnahme der untersuchten polymeren Nanopartikel von einem Makropinozytose-ähnlichen Mechanismus gesteuert wird. Im Laufe dieser Arbeit werden mehrere Faktoren identifiziert, die in diesem Aufnahmemechanismus eine Rolle spielen. Darunter fallen unter anderem die kleinen GTPasen Rac1 und ARF1, die die Aufnahme von SPIOPSN beeinflussen. Darauffolgend werden die intrazellulären Transportwege der Nanopartikel untersucht. Mit Hilfe eines neuartigen Massenspektrometrieansatzes wird der intrazelluläre Transport von nanopartikelhaltigen endozytotischen Vesikeln rekonstruiert. Intensive Untersuchungen identifizieren Marker von frühen Endosomen, späten Endosomen/ multivesikulären Körpern, Rab11+- Endosomen, Flotillin-Vesikeln, Lysosomen und COP-Vesikeln. Schließlich wird der Einfluss des lysosomalen Milieus auf die Proteinhülle der Nanopartikel untersucht. Hier wird gezeigt, dass die adsorbierte Proteinhülle auf den Nanopartikeln in die Zelle transportiert wird und anschließend im Lysosom abgebaut wird. rnInsgesamt verdeutlicht diese Arbeit, dass die klassische Strategie des nanopartikulären und invasiven Wirkstofftransportmechanismuses überdacht werden muss. Weiterhin lässt sich aus den Daten schlussfolgern, dass polymere Nanopartikel einem atypischen Makropinozytose-ähnlichen Aufnahmemechanismus unterliegen. Dies resultiert in einem intrazellulären Transport der Nanopartikel von Makropinosomen über multivesikuläre Körperchen zu Lysosomen.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallische Nanopartikel und ihre Oxide (z.B. ZnO NP, TiO2 NP und Fe2O3 NP) werden aufgrund ihrer chemischen und physikalischen Eigenschaften häufig als Additive in der Reifenproduktion, in Katalysatoren, Lebensmitteln, Arzneimitteln und Kosmetikprodukten verwendet. Künftig wird ein kontinuierlicher Anstieg der industriellen Anwendung (~ 1663 Tonnen im Jahr 2025) mit gesteigerter Freisetzung in die Umwelt erwartet, was zwangsläufig zu einer vermehrten Aufnahme über das respiratorische Epithel führt. Metalldampffieber ist als gesundheitsschädigender Effekt von Metalloxid-haltigen Aerosolen (z.B. ZnO) nach Inhalation bekannt. Immunreaktionen, wie beispielsweise Entzündungen, werden häufig mit der Entstehung von Sauerstoffradikalen (ROS) in Verbindung gebracht, die wiederum zu DNA-Schäden führen können. Drei mögliche Ursachen der Genotoxität werden angenommen: direkte Interaktion von Nanopartikeln mit intrazellulären Strukturen, Interaktion von Ionen dissoziierter Partikel mit intrazellulären Strukturen sowie die Entstehung von ROS initiiert durch Partikel oder Ionen.rnDie vorliegende Studie befasst sich mit den Mechanismen der Genotoxizität von ZnO Nanopartikeln (ZnO NP), als Beispiel für metallische Nanopartikel, im respiratorischen Epithel. In der Studie wurde gezielt die intrazelluläre Aufnahme und Verteilung von ZnO NP, deren Toxizität, deren DNA schädigendes Potential sowie die Aktivierung der DNA damage response (DDR) analysiert.rnEs konnten kaum internalisierte ZnO NP mittels TEM detektiert werden. Innerhalb der ersten Sekunden nach Behandlung mit ZnO NP wurde spektrofluorometrisch ein starker Anstieg der intrazellulären Zn2+ Konzentration gemessen. In unbehandelten Zellen war Zn2+ in granulären Strukturen lokalisiert. Die Behandlung mit ZnO NP führte zu einer Akkumulation von Zn2+ in diesen Strukturen. Im zeitlichen Verlauf verlagerten sich die Zn2+-Ionen in das Zytoplasma, sowie in Zellkerne und Mitochondrien. Es wurde keine Kolokalisation von Zn2+ mit den frühen Endosomen und dem endoplasmatischen Retikulum beobachtet. Die Vorbehandlung der Zellen mit Diethylen-triaminpentaessigsäure (DTPA), als extrazellulärem Komplexbildner, verhinderte den intrazellulären Anstieg von Zn2+ nach Behandlung mit den Partikeln.rnDie Behandlung mit ZnO NP resultierte in einer zeit- und dosisabhängigen Reduktion der zellulären Viabilität, während die intrazelluläre ROS-Konzentrationen in den ersten 30 min leicht und anschließend kontinuierlich bis zum Ende der Messung anstiegen. Außerdem verringerte sich das mitochondriale Membranpotential, während sich die Anzahl der frühapoptotischen Zellen in einer zeitabhängigen Weise erhöhte. rnDNA Doppelstrangbrüche (DNA DSB) wurden mittels Immunfluoreszenz-Färbung der γH2A.X foci sichtbar gemacht und konnten nach Behandlung mit ZnO NP detektiert werden. Die Vorbehandlung mit dem Radikalfänger N-Acetyl-L-Cytein (NAC) resultierte in stark reduzierten intrazellulären ROS-Konzentrationen sowie wenigen DNA DSB. Die DNA Schädigung wurde durch Vorbehandlung mit DTPA ganz verhindert.rnDie Aktivierung der DDR wurde durch die Analyse von ATM, ATR, Chk1, Chk2, p53 und p21 mittels Western Blot und ELISA nach Behandlung mit ZnO NP überprüft. Der ATR/Chk1 Signalweg wurde durch ZnO NP nicht aktiviert. Die Komplexierung von Zn2+ resultierte in einer verminderten ATM/Chk2 Signalwegaktivierung. Es zeigte sich, dass das Abfangen von ROS keinen Effekt auf die ATM/Chk2 Signalwegaktivierung hatte.rnZusammengefasst wurde festgestellt, dass die Exposition mit ZnO NP in der Entstehung von ROS, reduzierter Viabilität und vermindertem mitochondrialem Membranpotential resultiert, sowie zeitabhängig eine frühe Apoptose initiiert. ZnO NP dissoziierten extrazellulär und wurden schnell als Zn2+ über unbekannte Mechanismen internalisiert. Die Zn2+-Ionen wurden im Zytoplasma, sowie besonders in den Mitochondrien und dem Zellkern, akkumuliert. Die DDR Signalgebung wurde durch ZnO NP aktiviert, jedoch nicht durch NAC inhibiert. Es wurde gezeigt, dass DTPA die DDR Aktivierung komplett inhibierte. Die Behandlung mit ZnO NP induzierte DNA DSB. Die Inhibition von ROS reduzierte die DNA DSB und die Komplexierung der Zn2+ verhinderte die Entstehung von DNA DSB.rnDiese Daten sprechen für die Dissoziation der Partikel und die hierbei freigesetzten Zn2+ als Hauptmediator der Genotoxizität metallischer Nanopartikel. rn